Bacterial fermentation of meats

  • L. Kröckel


As with all dead organic matter, muscles from slaughtered animals, as a whole or in particulate form, may be modified by microorganisms during prolonged storage. Environmental conditions and storage time greatly influence the sort and extent of modification. For foods, there can be desirable and undesirable microorganisms, which bring about desirable and less-desirable changes. Desirable modifications are improvements in flavour, aroma, palatability, appearance and storage characteristics. Microbial activities that result in off-odours, strange taste, health- threatening metabolites, colour deterioriation, loss of consistency, and the growth of pathogenic and toxinogenic bacteria generally spoil the food and thus make it unsuitable for human consumption. Changes in microbial abundance, water activity (aw), pH, pO2 and concentration of chemical compounds may be due to real fermentation processes, i.e. incomplete anaerobic oxidations of organic substrates, or to aerobic microbial metabolism. However, it is common to call a food ‘fermented’ if microorganisms, be they truly fermenting or not, or enzymes had contributed significantly to its final characteristics (Campbell-Platt, 1987). Several meat enzymes are known to remain active in dead muscles, e.g. the glycolytic sequence, lipases and proteases. Dead or non-growing microorganisms may release or provide active enzymes, e.g. nitrate reductase and catalase.


Lactic Acid Bacterium Meat Product Starter Culture Lactobacillus Plantarum Lipase Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelal, A.T. (1979) Arginine catabolism by microorganisms. In Annual Review of Microbiology, Vol. 33 Eds M.P. Starr, J.L. Ingraham and S. Raffel, pp. 139–168. Annual Reviews, Palo Alto, CA.Google Scholar
  2. Adams, M.R. (1986) Fermented flesh foods. In Progress in Industrial Microbiology, Vol. 23 Ed. M.R. Adams, pp. 159–198. Elsevier, Amsterdam.Google Scholar
  3. Alford, J.A., Pierce, D.A. and Suggs, F.G. (1964) Activity of microbial lipases on natural fats and synthetic triglycerides. J. Lipid Res., 5, 390–394.Google Scholar
  4. Anderson, M.E. and Marshall, R.T. (1989) Interaction of concentration and temperature of acetic acid solution on reduction of various species of microorganisms on beef surfaces. J. Food Protect., 52, 312–315.Google Scholar
  5. Andersson, R.E., Daeschel, M.A. and Hassan, H.M. (1988) Antibacterial activity of plantaricin SIK-83, a bacteriocin produced by Lactobacillus plantarum. Biochimie, 70, 381–390.CrossRefGoogle Scholar
  6. Arneth, W. and Herold, B. (1988) Determination of nitrate and nitrite in sausages after enzymatic reduction. Fleischwirtschaft, 68, 761–764.Google Scholar
  7. Aryanta, R.W., Fleet G.H. and Buckle K.A. (1991). The occurrence and growth of microorganisms during the fermentation of fish sausage. Int. J. Food Microbiol., 13, 143–156.CrossRefGoogle Scholar
  8. Asghar, A., Gray, J.I., Buckley, D.J., Pearson, A.M. and Booren, A.M. (1988) Perspectives on warmed-over flavour. Food Technol., 42, 102–108.Google Scholar
  9. Bacus, J. (1984) Utilization of Microorganisms in Meat Processing. Research Studies Press, Letchworth.Google Scholar
  10. Bacus, J.N. and Brown, W.L. (1981) Use of microbial cultures: Meat products. Food Technol., 35, 74–78.Google Scholar
  11. Baird-Parker, A.C. and Kilsby, D.C. (1987) Principles of predictive food microbiology. J. Appl. Bact. 63, 43S–49S.CrossRefGoogle Scholar
  12. Bantleon, A.D. (1987) Lactobacillus sake und Lactobacillus curvatus als Starterorganismen für die Rohwurstreifung. Thesis, Universität Hohenheim.Google Scholar
  13. Barnes, E.M., Mead, G.C., Impey, C.S. and Adams, B.W. (1979) Spoilage organisms of refrigerated poultry meat. In Cold Tolerant Microbes in Spoilage and the Environment. Eds A.D. Russel and R. Fuller, pp. 101–116. Academic Press, London.Google Scholar
  14. Biehl, M.L. and Buck, W.B. (1987) Chemical contaminants: their metabolism and their residues. J. Food Protect., 50, 1058–1073.Google Scholar
  15. Blickstad, E. and Molin, G. (1984) Growth and end-product formation in fermenter cultures of Brochothrix thermosphacta ATCC 11509T and two psychrotrophic Lactobacillus spp. in different gas atmospheres. J. Appl. Bact., 57, 213–220.CrossRefGoogle Scholar
  16. Borch, E. and Molin, G. (1989) The aerobic growth and product formation of Lactobacillus, Leuconostoc, Brochothrix, and Carnobacterium in batch cultures. Appl. Microbiol. Biotechnol., 30, 81–88.CrossRefGoogle Scholar
  17. Botas, M., Benezet, A., Olmo, N., Osa, J.M. and Perez Florez, F. (1987) Study of phosphorus content in raw cured sausages. Alimentaria, 183, 59–65.Google Scholar
  18. Bottazi, V. (1988) An introduction to rod-shaped lactic-acid bacteria. Biochimie, 70,303–315.CrossRefGoogle Scholar
  19. Bowler, C., Slooten, L., Vandenbranden, S., De Rycke R., Bottermann, J., Sybesma, C., Van Montagu, M. and Inze, D. (1991) Mangan superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBOJ., 10, 1723–1732.Google Scholar
  20. Burrowes, O.J., Schmidt, F.H., Smith, K.L. and Chambers, J.V. (1986) Evaluation of summer sausage manufactured using mixed Lactobacillus and Leuconostoc starter culture. J. Food Protect. 49, 280–281.Google Scholar
  21. Campanini, M., Mutti, P. and Previdi, P. (1987) Caratterizzazione di Micrococcaceae da insaccati stagionati. Industria Conserva, 62, 3–6.Google Scholar
  22. Campbell-Platt, G. (1987) Fermented Foods of the World — A Dictionary and Guide. Butterworths, London.Google Scholar
  23. Cantoni, C. and Bersani, C. (1985). Lactobacilli e maturazione degli insaccati. Industrie Alimentari, 24, 256–258.Google Scholar
  24. Cantoni, C., Molnar, M.R., Renon, P. and Gioletti, G. (1967) Lipolytic micrococci in pork fat. J. Appl. Bact., 30, 190–196.CrossRefGoogle Scholar
  25. Chandler, R.E. and McMeekin, T.A. (1989) Modelling the growth response of Staphylococcus xylosus to changes in temperature and glycerol concentration/water activity. J. Appl. Bact., 66, 543–548.CrossRefGoogle Scholar
  26. Collins, E.B. and Aramaki, K. (1980). Production of hydrogen peroxide by Lactobacillus acidophilus. J. Dairy Sci., 63, 353–357.CrossRefGoogle Scholar
  27. Collins, F.M. and Carter, P.B. (1978). Growth of Salmonellae in orally infected germfree mice. Infect. Immun., 21, 41–47.Google Scholar
  28. Collins-Thompson, D.L. and Thomson, I.Q. (1986). Changes in manganese content in Lactobacillus plantarum during inhibition with sodium nitrite. J. Food Protect., 49, 602–604.Google Scholar
  29. Comi, G., Cantoni, C. and Celori, F. (1986) Considerazioni sugli stafilococchi coagulasi negativi degli insaccati crudi stagionati. Industrie Alimentari, 25, 378–380.Google Scholar
  30. Condon, S. (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46, 269–280.CrossRefGoogle Scholar
  31. Costerton, J.W., Marrie, T.J. and Cheng, K.-J. (1985) Phenomena of bacterial adhesion. In Bacterial Adhesion. Mechanisms and Physiological Significance, eds D.C. Savage and M. Fletcher, pp. 3–43. Plenum Press, New York.CrossRefGoogle Scholar
  32. Dahiya, R.S. and Speck, M.L. (1968) Hydrogen peroxide formation by lactobacilli and its effects on Staphylococcus aureus. J. Dairy Sci., 51, 1568–1572.CrossRefGoogle Scholar
  33. Dainty, R.H., Shaw, B.G. and Roberts, T.A. (1983) Microbial and chemical changes in chill- stored red meats. In Food Microbiology: Advances and Prospects. Eds T.A. Roberts and F.A. Skinner, pp. 151–178. Academic Press, London, New York.Google Scholar
  34. Dainty, R.H., Edwards, R.A. and Hibbards, C.M. (1989a) Spoilage of vacuum-packaged beef by a Clostridium sp. J. Sci. Food Agric. 49, 511–516.CrossRefGoogle Scholar
  35. Dainty, R.H., Edwards, R.A., Hibbards, C.M. and Ramantanis, S.V. (1986) Bacterial sources of putrescine and cadaverine in chill stored vacuum-packaged beef. J. Appl. Bact., 61, 117–124.CrossRefGoogle Scholar
  36. Dainty, R.H., Edwards, R.A., Hibbards, C.M. and Marnewick, J.J. (1989b) Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. J. Appl. Bact. 66, 281–290.CrossRefGoogle Scholar
  37. Debevere, J.M., Voets, J.P., Schryver, F. and Huyghebaert, A. (1976) Lipolytic activity of Micrococcus sp. isolated from a starter culture in pork fat. Lebensmittel-Wissenschaft Technol. 9, 160–162.Google Scholar
  38. Deibel, R.H., Niven, C.F. and Wilson, G.D. (1961) Microbiology of meat curing. III. Some microbiological and related technological aspects in the manufacture of fermented sausages. Appl. Microbiol., 9, 156–161.Google Scholar
  39. Demasi, T.W., Grimes, L.W., Dick, R.L. and Acton, J.C. (1989) Nitrosoheme pigment formation and light effects on colour properties of semidry nonfermented and fermented sausages. J. Food Protect., 52, 189–194.Google Scholar
  40. De Pablo, B., Asensio, M.A., Sanz, B. and Ordonez, J.A. (1989) The D(-)lactic acid and acetoin/diacetyl as potential indicators of the microbial quality of vacuum-packaged pork and meat products. J. Appl. Bact., 66, 185–190.CrossRefGoogle Scholar
  41. Dixon, N.M. and Kell, D.B. (1989) The inhibition by C02 of the growth and metabolism of microorganisms. J. Appl. Bact., 67, 109–136.CrossRefGoogle Scholar
  42. Dunny, G.M., Krug, D.A., Pan, C.L. and Ledford, R.A. (1988) Identification of cell wall antigens associated with a large conjugative plasmid encoding phage resistance and lactose fermentation ability in lactic streptococci. Biochimie, 70, 443–450.CrossRefGoogle Scholar
  43. Edwards, R.A., Dainty, R.H. and Hibbard, C.M. (1987a) Volatile compounds produced by meat pseudomonads and related reference strains during growth on beef stored in air at chill temperatures. J. Appl. Bact., 62, 403–412.CrossRefGoogle Scholar
  44. Edwards, R.A., Dainty, R.H., Hibbard, C.M. and Ramantanis, S.V. (1987b) Amines in fresh beef of normal pH and the role of bacteria in changes in concentration observed during storage in vacuum packs at chill temperatures. J. Appl. Bact., 63, 427–434.Google Scholar
  45. Egan, A.F. (1983) Lactic acid bacteria of meat products. Antonie van Leeuwenhoek, 49, 327–336.CrossRefGoogle Scholar
  46. El-Gendy, S.M., Abdel-Galil, H., Shahin, Y. and Hegazi, F.Z. (1983) Characteristics of salttolerant lactic acid bacteria in particular lactobacilli, leuconostocs, and pediococci isolated from salted raw milk. J. Food Protec., 46, 429–433.Google Scholar
  47. Enfors, S.O. and Molin, G. (1980) Effect of high concentrations of carbon dioxide on growth rate of Pseudomonas fragi, Bacillus cereus and Streptococcus cremoris. J. Appl. Bact., 48, 409–416.CrossRefGoogle Scholar
  48. Farber, J.M. (1986) Predictive modeling of food deterioration and safety. In Food Borne Microorganisms and their Toxins: Developing Methodology, eds. M.D. Pierson and N.J. Stern, pp. 57–90. Marcel Dekker, New York.Google Scholar
  49. Faustman, C., Johnson, J.L., Cassens, R.G. and Doyle, M.P. (1990) Colour reversion in beef — Influence of psychrotrophic bacteria. Fleischwirtschaft int., 49–52Google Scholar
  50. Frey, W. (1987) Schnittfeste Rohwurst im internationalen Vergleich. Fleischerei, 38, 701–703.Google Scholar
  51. Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bact., 66, 365–378.CrossRefGoogle Scholar
  52. Fuller, R. and Brooker, B.E. (1980) The attachment of bacteria to the squamous epithelial cells and its importance in the microecology of the intestine. In Microbial Adhesion to Surfaces, eds R.C.W. Berkley, J.M. Lynch, J. Meiling, P.R. Rutter and B. Vincent, pp. 495–507. Ellis Horwood, Chichester.Google Scholar
  53. Gardner, G.A. (1981) Brochothrix thermosphacta (Microbacterium thermosphactum) in the spoilage of meats: a review. In Psychrotrophic Microorganisms in Spoilage and Pathogenicity Eds T.A. Roberts, G. Hobbs, J.H.B. Christian and N. Skovgaard, pp. 139–173. Academic Press, London.Google Scholar
  54. Garriga, M., Compte, M., Casademont, G. and Moreno-Amich, R. (1988) Influence of carbohydrates in the fermentation of dry sausages. Rev. Agroquim. Tecnol. Alimentos, 28, 548–557.Google Scholar
  55. Gehlen, K.H. (1989) Einfluss der Technologie auf die Rohwurstreifung mit Lactobacillus curvatus, Micrococcus varians und weiteren Starterorganismen unter besonderer Berücksichtigung der Nitratreduktion. Thesis, Universität Hohenheim.Google Scholar
  56. Giaccone, V., Sibour, M. and Parisi, E. (1988) Sliced vacuum-packaged Italian dry sausages and frankfurter-type sausages. Microbiological processes and shelf-life. Fleischwirtschaft, 68, 1001–1003.Google Scholar
  57. Gibbs, P.A. (1987) Novel uses for lactic acid fermentation in food preservation. J. Appl. Bact., 51S–58SGoogle Scholar
  58. Gill, C.O. (1983) Meat spoilage and evaluation of the potential storage life of fresh meat. J. Food Protect. 46, 444–452.Google Scholar
  59. Gill, C.O. and Newton, K.G. (1977) The development of aerobic spoilage flora on meat stored at chill temperature. J. Appl. Bact., 43, 189–195.CrossRefGoogle Scholar
  60. Gill, C.O. and Penney, N. (1986) Packaging conditions for extended storage of chilled dark, firm, dry beef. Meat Sci., 18, 41–54.CrossRefGoogle Scholar
  61. Gilliland, S.E. (1985) Bacterial Starter Cultures for Foods. CRC Press, Boca Raton, FL.Google Scholar
  62. Girard, J.P., Bucharles, C., Berdague, J.L. and Ramihone, M. (1989) Einfluss ungesättigter Fette auf Abtrocknungs und Fermentationsvorgänge von Rohwürsten. Fleischwirtschaft, 69, 255–260.Google Scholar
  63. Goldschmidt, M.C. and Lockhart, B.M. (1971) Rapid methods for determining decarboxylase activity: arginine decarboxylase. Appl. Microbiol., 22, 350–357.Google Scholar
  64. Gonzalez, C.F. and Kunka, B.S. (1987) Plasmid-associated bacteriocin production and sucrose fermentation in Pediococcus acidilactici. Appl. Environ. Microbiol., 53, 2534–2538.Google Scholar
  65. Gottschalk, G. (1979) Bacterial Metabolism. Springer-Verlag, New York, Heidelberg, Berlin.CrossRefGoogle Scholar
  66. Grau, F.H. (1980) Inhibition of the anaerobic growth of Brochothrix thermosphacta by lactic acid. Appl. Environ. Microbiol., 40, 433–436.Google Scholar
  67. Greer, G.G. and Murray, A.C. (1988) Effects of pork muscle quality on bacterial growth and retail case life. Meat sci., 24, 61–72.CrossRefGoogle Scholar
  68. Harel, S. and Kanner, J. (1985a) Hydrogen peroxide generation in ground muscle tissues. J. Agric. Food Chem., 33, 1186–1188.CrossRefGoogle Scholar
  69. Harel, S. and Kanner, J. (1985b) Muscle membranal lipid peroxidation initiated by H202- activated metmyoglobin. J. Agric. Food Chem., 33, 1188–1192.CrossRefGoogle Scholar
  70. Hassan, H.M. and Fridovich, I. (1978) Regulation of the synthesis of catalase and peroxidase in Escherichia coli. J. Biol. Chem., 253, 6445–6450.Google Scholar
  71. Hastings, J.W. and Holzapfel, W.H. (1987) Conventional taxonomy of lactobacilli surviving radurization of meat. J. Appl. Bact., 62, 209–216.CrossRefGoogle Scholar
  72. Hechelmann, H. and Kasprowiak, R. (1991) Mikrobiologische Kriterien für stabile Produkte. Fleischwirtschaft, 71, 374–389.Google Scholar
  73. Hechelmann, H., Lücke, F.-K. and Schillinger, U. (1988) Ursachen und Vermeidung von Staphylococcus aureus-Intoxikationen nach Verzehr von Rohwurst und Rohschinken. Mitteilungsbl. Bundesanstalt Fleischforsch., Kulmbach, 100, 7965–7964Google Scholar
  74. Hesseltine, C.W. (1984) Fermented Foods in the Orient with emphasis on soy sauce. J. Japan Soy Sauce Res. Inst., 10, 69–81.Google Scholar
  75. Holley, R.A., Jui, P.A., Wittmann, M. and Kwan, P. (1988) Survival of S. aureus and S. typhimurium in raw ripened dry sausages formulated with mechanically-separated chicken meat. Fleischwirtschaft, 68, 194–201.Google Scholar
  76. Honkavaara, M. (1988) Influence of PSE pork on the quality and economics of cooked, cured ham and fermented dry sausage manufacture. Meat Sci., 24, 201–208.CrossRefGoogle Scholar
  77. Hugas, M. and Montfort, J.M. (1986) Microbial evolution during the curing of Spanish Serrano hams. The influence of some preservatives on the microbial flora. In Proc. Eur. Meeting Meat Res. Workers, 32/II, 307–310.Google Scholar
  78. Ingram, M. and Dainty, R.H. (1971) Changes caused by microbial spoilage of meat. J. Appl. Bact., 34, 21–39.CrossRefGoogle Scholar
  79. Ishiwa, M. and Iwata, S. (1980) Drug resistance plasmids in Lactobacillus fermentum. J. Gen. Appl. Microbiol. 26, 71–74.CrossRefGoogle Scholar
  80. Izumi, K., Cassens, R.G. and Greaser, M.L. (1989) Reaction of nitrite with ascorbic acid and its significant role in nitrite-cured food. Meat Sci., 26, 141–154.CrossRefGoogle Scholar
  81. Jacquet, B. (1988) Les produits du pore. II. Les produits sees. Viandes et Produits Carnes, 9, 67–71.Google Scholar
  82. Johns, A.M., Birkinshaw, L.H. and Ledward, D.A. (1989) Catalysts of lipid oxidation in meat products. Meat sci., 25, 209–220.CrossRefGoogle Scholar
  83. Joseph, A.L., Berry, B.W., Wagner, S.B. and Davis, L.A. (1978) Lactic acid, pH and bacterial values of dry fermented salami containing mechanically deboned beef and soy protein fiber. J. Food Protect., 41, 881–884.Google Scholar
  84. Juven, B.J., Weisslowicz, H. and Harel, S. (1988) Detection of hydrogen peroxide produced by meat lactic starter cultures. J. Appl. Bact., 65, 357–360.CrossRefGoogle Scholar
  85. Kagermeier, A. (1981) Taxonomie und Vorkommen von Milchsäurebakterien in Fleischprodukten. Thesis, Ludwig-Maximilian-Universität München.Google Scholar
  86. Kalchayanand, N., Ray, B., Field, R.A. and Johnson, M.C. (1989) Spoilage of vacuum- packaged refrigerated beef by Clostridium. J. Food Protect., 52, 424–426.Google Scholar
  87. Kandler, O. and Weiss, N. (1986) Genus Lactobacillus. In Bergey’s Manual of Systematic Bacteriology. Eds. P.H.A. Sneath, N.S. Mair, M.E. Sharpe and J.G. Holt. Williams & Wilkins, Baltimore.Google Scholar
  88. Katsaras, K. and Leistner, L. (1988) Topographie der Bakterien in Rohwurst. Fleischwirtschaft, 68, 1295–1298.Google Scholar
  89. Klaenhammer, T.R. (1988) Bacteriocins of lactic acid bacteria. Biochimie 70, 337–349.CrossRefGoogle Scholar
  90. Klettner, P.G. and Baumgartner, P.A. (1980) The technology of raw sausage manufacture. Food Technol. Australia, 32, 380–384.Google Scholar
  91. Kok, J. and Venema, G. (1988) Genetics of proteinases of lactic acid bacteria. Biochimie, 70, 475–488.CrossRefGoogle Scholar
  92. Kraft, A.A. (1986) Meat Microbiology. In Muscle as Food. Ed. P.J. Bechtel, pp. 239–278. Academic Press, Orlando.Google Scholar
  93. Krautil, F.L. and Tulloch, J.D. (1987) Microbiology of mechanically recovered meat. J. Food Protect., 50, 557–561.Google Scholar
  94. Kroll, R.G., Frears, E.R. and Bayliss, A. (1989) An oxygen electrode-based assay of catalase activity as a rapid method for estimating the bacterial content of foods. J. Appl. Bact., 66, 209–218.CrossRefGoogle Scholar
  95. Lagerborg, V.A. and Clapper, W.E. (1952) Amino acid decarboxylases of lactic acid bacteria. J. Bact., 63, 393–397.Google Scholar
  96. Landvogt, A. and Fischer, A. (1990) Dry sausage ripening — Targeted control of the acidification capacity of the starter cultures. Fleischwirtschaft, 70, 1134–1140.Google Scholar
  97. Landvogt, A. and Fischer, A. (1991) Rohwurstreifung — Gezielte Steuerung der Säuerungsleistung von Starterkulturen. 2 Teil. Fleischwirtschaft, 71, 32–35.Google Scholar
  98. Law, B.A. and Kolstad, J. (1983). Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 225–245.CrossRefGoogle Scholar
  99. Leistner, L. (1986) Allgemeines über Rohwurst. Fleischwirtschaft, 66, 290–300.Google Scholar
  100. Leistner, L. (1988) Shelf-stable Oriental meat products. In Proc. 34th Int. Congr. Meat Sci. Technol., Brisbane, Australia, pp. 470–475.Google Scholar
  101. Leistner, L. (1991) Fermented and intermediate-moisture meat products. Outlook on Agriculture, 20, 113–119.Google Scholar
  102. Leistner, L. and Lücke, F.-K. (1989) Bioprocessing of meats. In Biotechnology and Food Processing. Eds S.D. Kung, D.D. Bills and R. Quatrano, pp. 273–286. Butterworths, Boston.Google Scholar
  103. Leistner, L., Hechelmann, H., Bern, Z. and Albertz, R. (1973) Untersuchungen zur Reduktion des Nitritzusatzes zu Fleischerzeugnissen. Fleischwirtschaft, 55, 1751–1754.Google Scholar
  104. Liepe, H.-U. (1983) Starter cultures in meat production. In Biotechnology. Vol. 5. Ed. G. Reed, pp. 400–424. Verlag Chemie, Weinheim.Google Scholar
  105. Liepe, H.U. (1987) Keimverteilung in einer Rohwurst. Fleischwirtschaft, 67, 1266–1267.Google Scholar
  106. Liepe, H.U. (1988) Lup cheong. Analysendaten einer chinesischen Trockenwurst. Fleischwirtschaft, 68, 157.Google Scholar
  107. Liepe, H.-U., Pfeil, E. and Porobic, R. (1990) Influence of sugars and bacteria on dry sausage souring. Fleischwirtschaft int., 43–46.Google Scholar
  108. Liu, M.L., Kondo, J.K., Barnes, M.B. and Bartholomew, D.T. (1988) Plasmid-linked maltose utilization in Lactobacillus spp. Biochimie, 70, 351–355.CrossRefGoogle Scholar
  109. Loewen, P.C. and Switala, J. (1987) Multiple catalases in Bacillus subtilis. J. Bact., 169, 3601–3607.Google Scholar
  110. Lücke, F.K. (1985) Fermented sausages. In Microbiology of Fermented Foods, Vol. 2. Ed. B.J.B. Wood, pp. 41–83. Elsevier Applied Science London.Google Scholar
  111. Lücke, F.K., Popp, J. and Kreutzer, R. (1986) Bildung von Wasserstoffperoxid durch Laktobazillen aus Rohwurst und Brühwurstaufschnitt. Chem. Mikrobiol. Technol. Lebensmittel, 10, 78–81.Google Scholar
  112. Marriott, N.G., Naumann, H.D., Stringer, W.C. and Hedrick, H.B. (1967) Colour stability of prepackaged fresh beef as influenced by predisplay environments. Food Technol., 21, 1518–1520.Google Scholar
  113. Martin, S.E. and Chaven, S. (1987) Synthesis of catalase in Staphylococcus aureus MF-31. Appl. Environ. Microbiol., 53, 1207–1209.Google Scholar
  114. Mattila, T. and Frost, A.J. (1988) The growth of potential food poisoning organisms on chicken and pork muscle surfaces. J. Appl. Bact., 65, 455–161.CrossRefGoogle Scholar
  115. McKay, L. (1986) Application of genetic engineering techniques for dairy starter culture improvement. In Biotechnology in Food Processing. Eds S.K. Harlander and T.B. Labuza, pp. 145–156. Noyes Publications, Park Ridge, NJ.Google Scholar
  116. McMeekin, T.A., Chandler, R.E., Doe, P.E., Garland, C.D., Olley, J., Putro, S. and Ratkowsky, D.A. (1987) Model for combined effect of temperature and salt concentration water activity on the growth rate of Staphylococcus xylosus. J. Appl. Bact., 62, 543–550.CrossRefGoogle Scholar
  117. Molin, G. (1985) Mixed carbon source utilization of meat-spoilage Pseudomonas fragi 72 in relation to oxygen limitation and carbon dioxide inhibition. Appl. Environ. Microbiol., 49, 1442–1447.Google Scholar
  118. Molin, G. and Ternström, A. (1986) Phenotypically based taxonomy of psychrotrophic Pseudomonas isolated from spoiled meat, water and soil. Int. J. Systematic Bacteriol., 36, 257–274.CrossRefGoogle Scholar
  119. Molina, I., Silla, H., Flores, J. and Monzo, J.L. (1990) Study of the microbial flora in dry- cured ham. Fleischwirtschaft Int., 54–56.Google Scholar
  120. Montville, T.J., Hsu, A.H.M. and Meyer, M.E. (1987a) High-efficiency conversion of pyruvate to acetoin by Lactobacillus plantarum during pH-controlled and fed-batch fermentations. Appl. Environ. Microbiol., 53, 1798–1802.Google Scholar
  121. Montville, T.J., Meyer, M.E. and Han-Ming Hsu, A. (1987b) Influence of carbon substrates on lactic acid, cell mass and diacetyl-acetoin production in Lactobacillus plantarum. J. Food Protect., 50, 42–46.Google Scholar
  122. Mortvedt, C.I., Nissen-Meyer, J., Sletten, K. and Nes, I.F. (1991) Purification and amino acid sequence of Lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl. Environ. Microbiol., 57, 1829–1834.Google Scholar
  123. Muriana, P. and Klaenhammer, T.R. (1991a) Purification and partial characterization of Lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. Microbio.,57, 114–121.Google Scholar
  124. Muriana, P. & Klaenhammer, T.R. (1991b) Cloning, phenotypic expression, and DNA sequence of the gene for Lactacin F, an antimicrobial peptide produced by Lactobacillus spp. J. Bact., 173, 1779–1788.Google Scholar
  125. Murphy, M.G. and Condon, S. (1984) Comparison of aerobic and anaerobic growth of Lactobacillus plantarum in a glucose medium. Arch. Microbiol., 138, 49–53.CrossRefGoogle Scholar
  126. Naes, H., Chrzanowska, J. Nissen-Meyer, J., Pedersen, B.O. and Blom, H. (1991) Fermentation of dry sausage — The importance of proteolytic and lipolytic activities of lactic acid bacteria. Proc. 37th Int. Congr. Meat sci. Technol., Vol. 2, pp. 914–917.Google Scholar
  127. Nagy, A., Mihalyi, V. and Incze, K. (1988). Lagerung ungarischer Salami. Chemische und organoleptische Veränderungen. Fleischwirtschaft, 68, 431–432, 435.Google Scholar
  128. Newton, K.G. and Gill, C.O. (1978) Storage quality of dark, firm, dry meat. Appl. Environ. Microbiol., 36, 375–376.Google Scholar
  129. Newton, K.G. and Gill, C.O. (1980) The microbiology of DFD fresh meats: a review. Meat sci., 5, 223–232.CrossRefGoogle Scholar
  130. Nicol, D.J., Shaw, M.K. and Ledward, D.A. (1970) Hydrogen sulfide production by bacteria and sulfomyoglobin formation in prepackaged chilled beef. Appl. Microbiol., 19, 937–939.Google Scholar
  131. Niemand, J.G. and Holzapfel, W.H. (1984) Characteristics of lactobacilli isolated from radurized meat. Int. J. Food Microbiol., 1, 99–110.CrossRefGoogle Scholar
  132. Niven, C.F. and Evans, J.B. (1957). Lactobacillus viridescens nov. spec., a heteroferment- ative species that produces a green discolouration of cured meat pigments. J. Bact., 73, 758–759.Google Scholar
  133. Nurmi, E. (1966) Effect of bacterial inoculations on characteristics and microbial flora of dry sausage. Acta Agralia Fennica, 108, 1–77.Google Scholar
  134. Nychas, G.J., Dillon, V.M. and Board, R.G. (1988) Glucose, the key substrate in the microbiological changes occurring in meat and certain meat products. Biotechnol. Appl. Biochem., 10, 203–231.Google Scholar
  135. Ordonez, J.A., Asensio, M.A., Garcia, M.L., Selgas, M.D. and Sanz, B. (1990) A reasonable aseptic method of monitoring the phenomena occurring during the ripening of dry fermented sausages. Fleischwirtschaft Int., 54–56.Google Scholar
  136. Papon, M. and Talon, R. (1988) Factors affecting growth and lipase production by meat lactobacilli strains and Brochothrix thermosphacta. J. Appl. Bact., 64, 107–115.Google Scholar
  137. Papon, M. and Talon, R. (1989) Cell location and partial characterization of Brochothrix thermosphacta and Lactobacillus curvatus lipases. J. Appl. Bact., 66, 235–242.CrossRefGoogle Scholar
  138. Petchsing, U. and Woodburn, M.J. (1990) Staphylococcus aureus and Escherichia coli in nham (Thai-style fermented pork sausage). Int. J. Food Microbiol., 10, 183–192.CrossRefGoogle Scholar
  139. Poma, J.P. (1987) Prevention du poissage des jambons sees en cours de fabrication. Viandes et Produits Carnes 8, 109–111.Google Scholar
  140. Price, R.J. and Lee, J.S. (1970) Inhibition of Pseudomonas species by hydrogen peroxide producing lactobacilli. J. Milk Food Technol., 33, 13–18.Google Scholar
  141. Puglia, M.L. and Seperich, G.J. (1983) Identification of a stimulatory agent in selected spices. In 83rd Annu. Meeting of the American Society for Microbiology, Abstract O 83.Google Scholar
  142. Raccach, M. (1981) Control of Staphylococcus aureus in dry sausage by newly developed meat starter culture and phenolic-type antioxidants. J. Food Protect., 44, 665–669.Google Scholar
  143. Raccach, M. (1985) Manganese and lactic acid bacteria. J. Food Protect., 48, 895–898.Google Scholar
  144. Raccach, M. (1987) Pediococci and biotechnology. CRC Crit. Rev. Microbiol., 14, 291–309.CrossRefGoogle Scholar
  145. Raccach, M. and Baker, R.C. (1978) Formation of hydrogen peroxide by meat starter cultures. J. Food Protect., 41, 798–799.Google Scholar
  146. Raccach, M., Kovac, S.L. and Mayer, C.M. (1985) Susceptibility of meat lactic acid bacteria to antibiotics. Food Microbiol., 2, 271–275.CrossRefGoogle Scholar
  147. Ramarathnam, N., Rubin, L.J. and Diosady, L.L. (1991) Studies on meat flavour, 1. Qualitative and quantitative at differences in uncured and cured pork. J. Agric. Food Chem., 39, 344–350.CrossRefGoogle Scholar
  148. Ray, B., Johnson, C. and Field, R.A. (1984) Growth of indicator, pathogenic and psychrotrophic bacteria in mechanically separated beef, lean ground beef and beef bone marrow. J. Food Protect., 47, 672–677.Google Scholar
  149. Reuter, G. (1970) Laktobazillen und eng verwandte Mikroorganismen in Fleisch und Fleischerzeugnissen. Fleischwirtschaft, 50, 954–962.Google Scholar
  150. Rhee, K.S. (1988) Enzymic and nonenzymic catalysis of lipid oxidation in muscle foods. Food Technol., 42, 127–132.Google Scholar
  151. Rheinbaben, K.E. and Seipp, H. (1986) Studies on the microflora of raw hams with special reference to Micrococcaceae. Chemie Mikrobiol. Technol. Lebensmittel, 9, 152–161.Google Scholar
  152. Rice, S.L., Eitenmiller, R.R. and Koehler, P.E. (1975) Histamine and tyramine content of meat products. J. Milk Food Technol., 38, 256–258.Google Scholar
  153. Rieman, H., Lee W.H. and Genigeorgis, C. (1972). Control of Clostridium botulinum and Staphylococcus aureus in semi-preserved meat products. J. Milk Food Technol., 35, 514–523.Google Scholar
  154. Roberts, T.A. and Jarvis, B. (1983) Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems. In Food Microbiology Advances and Prospects eds T.A. Roberts and B. Jarvis, pp. 85–95. Academic Press, London.Google Scholar
  155. Roca, M. and Kaiman, I. (1989) Antagonistic effect of some starter cultures on Enterobacter- iaceae (E. coli). Meat Sci., 25, 123–132.CrossRefGoogle Scholar
  156. Rödel, W., Stiebing, A. and Kröckel, L. (1991) Traditionelle Rohwurst mit Schimmelbelag. Entwicklung eines Herstellungsstandards für Salami. Bundesministerium für Landwirtschaft, Ernährung und Forsten,Forschungsreport 6, 18–19.Google Scholar
  157. Rödel, W., Scheuer, R., Stiebing, A. and Klettner, P.G. (1990). Messung des Sauerstoffgehaltes in Fleischerzeugnissen. Mitteilungsb. Bundesanstalt Fleischforsch. Kulmbach, 29, 5360.Google Scholar
  158. Santos-Buelga, C., Pena-Egido, M.J. and Rivas-Gonzalo, J.C. (1986). Changes in tyramine during chorizo-sausage ripening. J. Food Sci., 51, 518–519, 527.Google Scholar
  159. Sanz, B., Seigas, D., Parejo, I. and Ordonez, J.A. (1988) Characteristics of meat lactobacilli isolated from dry fermented sausages. Int. J. Food Microbiol., 6, 199–205.CrossRefGoogle Scholar
  160. Savell, J.W., Griffin, D.B., Dill, C.W., Acuff, G.R. and Vanderzant, C. (1986) A research note: Effect of film oxygen transmission rate on lean colour and microbiological characteristics of vacuum-packaged beef knuckles. J. Food Protect., 49, 917–919.Google Scholar
  161. Savic, Z., Zhang, K.S. and Savic, I. (1988) Chinese-style sausages. A special class of meat products. Fleischwirtschaft, 68, 612–617.Google Scholar
  162. Scharner, E. (1990) Verdrängungseffekte von Starterkulturen gegenüber Salmonellen in Rohwürsten. Fleischwirtschaft, 70, 1183–1186.Google Scholar
  163. Schiefer, G. and Schöne, R. (1978) Rohwurstherstellung mittels Starterkulturen. Nahrung, 22, 419–424.CrossRefGoogle Scholar
  164. Schillinger, U. and Lücke, F.-K. (1987) Identification of lactobacilli from meat and meat products. Food Microbiol., 4, 199–208.CrossRefGoogle Scholar
  165. Schillinger, U. and Lücke, F.K. (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 55, 1901–1906.Google Scholar
  166. Schillinger, U. and Lücke, F.K. (1990) Lactic acid bacteria as protective cultures in meat products. Fleischwirtschaft, 70, 1296–1299.Google Scholar
  167. Schleifer, K.H. (1986) Section 12. Gram-positive cocci. In Bergey’s Manual of Systematic Bacteriology, Vol. 2. Eds. P.H.A. Sneath, N.S. Mair, M.E. Sharpe and J.G. Holt. Williams & Wilkins, Baltimore, London, Los Angeles, Sydney.Google Scholar
  168. Seager, M.S., Banks, J.G., Blackburu, W. and Board, R.G. (1986) A taxonomic study of Staphylococcus spp. isolated from fermented sausages. J. Food Sci., 51, 295–297.CrossRefGoogle Scholar
  169. Sedewitz, B., Schleifer, K.H. & Götz, F. (1984) Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J. Bact., 160, 462–465.Google Scholar
  170. Seigas, M.D., Sanz, B. and Ordonez, J.A. (1988). Selected characteristics of micrococci isolated from Spanish dry fermented sausages. Food Microbiol., 5, 185–193.CrossRefGoogle Scholar
  171. Shahidi, F., Rubin, L.J. and Wood, D.F. (1988). Stabilization of meat lipids with nitrite-free curing mixtures. Meat Sci., 22, 73–80.CrossRefGoogle Scholar
  172. Shaw, B.G. and Harding, C.D. (1984). A numerical taxonomic study of lactic acid bacteria from vacuum-packaged beef, pork, lamb and bacon. J. Appl. Bact., 56, 25–40.CrossRefGoogle Scholar
  173. Shaw, B.G. and Latty, J.B. (1988) A numerical taxonomic study of non-motile nonfermentative Gram-negative bacteria from foods. J. Appl. Bact., 65, 7–22.CrossRefGoogle Scholar
  174. Shay, B.J., Egan, A.F., Wright, M. and Rogers, P.J. (1988) Cysteine metabolism in an isolate of Lactobacillus sake: plasmid composition and cysteine transport. FEMS Lett., 56, 183–188.CrossRefGoogle Scholar
  175. Silla, H., Molina, I., Flores, J. and D. Silvestre (1989) Study of the microbial flora in dry- cured ham. 1. Isolation and growth. Fleischwirtschaft, 69, 1128–1131.Google Scholar
  176. Slemr, J. (1981) Biogene Amine als potentieller chemischer Qualitätsindikator für Fleisch. Fleischwirtschaft, 61, 921–926.Google Scholar
  177. Sneath, P.H.A. and Jones, D. (1976) Brochothrix: a new genus tentatively placed in the family Lactobacillaceae. Int. J. Systematic Bact., 26, 102–104.CrossRefGoogle Scholar
  178. Stackebrandt, E. and Teuber, M. (1988) Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie, 70, 317–324.CrossRefGoogle Scholar
  179. Stengel, G. (1990) Staphylococci. Fleischwirtschaft Int., 62–66.Google Scholar
  180. Stiebing, A. and Rödel, W. (1988) Influence of relative humidity on the ripening of dry sausage. Fleischwirtschaft, 68, 1287–1291.Google Scholar
  181. Tetlow, A.L. and Hoover, D.G. (1988) A research note: Fermentation products from carbohydrate metabolism in Pediococcus pentosaceus PC39. J. Food Protect. 51, 804–806.Google Scholar
  182. Thompson, J. (1988) Lactic acid bacteria: model systems for in vivo studies of sugar transport and metabolism in Gram-positive organisms. Biochimie 70, 325–336.CrossRefGoogle Scholar
  183. Vandendriessche, F., Vandekerckhove, P. and Demeyer, D. (1980) The influence of some spices on the fermentation of a Belgian dry sausage. In Proc. 26th Eur. Meeting Meat Res. Workers, Colorado Springs, Vol. 2, pp. 128–133.Google Scholar
  184. Vidal, C.A. and Collins-Thompson, D.L. (1987) Resistance and sensitivity of meat lactic acid bacteria to antibiotics. J. Food Protect., 50, 737–740.Google Scholar
  185. von Husby, K.O. and Nes, I.F. (1986) Changes in the plasmid profile of Lactobacillus plantarum obtained from commercial meat starter cultures. J. Appl. Bact., 60, 413–418.CrossRefGoogle Scholar
  186. Wadström, T., Andersson, K., Sydow, M., Axelsson, L., Lindgren, S. and Gullmar, B. (1987) Surface properties of lactobacilli isolated from the small intestine of pigs. J. Appl. Bact., 62, 513–520.CrossRefGoogle Scholar
  187. Weidenfeller, P. and Fegeier, W. (1990). Methodological aspects of a micro-identification technique for the differentiation of coagulase-negative staphylococci to species level. Zentralb. Bakteriol., 274, 78–90.CrossRefGoogle Scholar
  188. Wiegner, J. and Hildebrandt, G. (1986) Zur Mindesthaltbarkeit von vakuumverpacktem Brühwurstaufschnitt. Fleischwirtschaft, 66, 316–322.Google Scholar
  189. Winter, R. (1988) Zuckerstoffe und GDL für die Rohwurstherstellung: Einflüsse auf die Reifung. Fleischerei, 39, 843–844.Google Scholar
  190. Wirth, F. (1986) The technology of processing meat not of standard quality. Fleischwirtschaft, 66, 1256–1260.Google Scholar
  191. Wood, B.J.B. (1985) Microbiology of Fermented Foods, Vols. 1 and 2. Elsevier Applied Science, London.Google Scholar
  192. Zee, J.A., Simard, R.E., Vaillancourt, R. and Boudreau, A. (1981). Effect of Lactobacillus brevis, Saccharomyces uvarum and grist composition on amine formations in beers. Can. Inst. Food sci. Technol. J., 14, 321–325.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • L. Kröckel

There are no affiliations available

Personalised recommendations