Maltodextrins

  • J. F. Kennedy
  • C. J. Knill
  • D. W. Taylor

Abstract

Commercial starch hydrolysates are classified on the basis of dextrose equivalent (DE). Maltodextrins are by definition starch hydrolysates (non-sweet saccharide polymers) that consist of α-d-glucose units linked primarily by (1→4) glycosidic linkages with a DE of less than 20, and a general formula of [(C6H10O5) n H2O]. DE is defined as the percentage of reducing sugar in a syrup calculated as dextrose on a dry weight basis. The definition of maltodextrins can thus be taken further as those materials having a dextrose equivalent of between 3 and 20. They, therefore, essentially bridge, in terms of molecular size, the gap between starch and sugar (Morris, 1984). The DE reflects reducing power, and therefore indicates stability and functionality. Starch hydrolysates with a DE greater than 20 are designated as various kinds of syrups depending on their source (e.g. corn syrups). Figure 3.1 shows the structural components of a maltodextrin mixture.

Keywords

Sugar Hydrolysis Carbohydrate Polysaccharide Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, A.M. (1989) Food Technol. 43, 4.Google Scholar
  2. Ammeraal, R.N., Delgado, G.A., Tenbarge, F.L. and Friedman, R.B. (1991) Carbohydr. Res. 215, 179.CrossRefGoogle Scholar
  3. Anon. (1988), Paselli SA2, Avebe Product Information, Ref. No. 05.12.31.167EF, Veendam, Holland.Google Scholar
  4. Anon. (1989a) Maltodextrin 184.1444, Code of Federal Regulations, 21, parts 170–199, p. 456, Office of the Federal Register National Archives and Records Administration.Google Scholar
  5. Anon. (1989b) Maltrin® M040, Maltodextrin Product Data Ref. No. 0212387, Grain Processing Corp., Muscatine, IA.Google Scholar
  6. Anon. (1990a) Calorie Control Comment, Calorie Control Council, 12, 1, 5.Google Scholar
  7. Anon. (1990b) Food Technol. 44, 3, 92.Google Scholar
  8. Anon. (1991) Prep. Foods 160, 9, 127.Google Scholar
  9. Anon, (undated (a)) Maltrin ® Maltodextrins and Corn Syrup Solids, Bulletin 11005, Grain Processing Corp., Muscatine, IA.Google Scholar
  10. Anon, (undated (b)) Maltodextrins-Corn Syrup Solids, Bulletin 10003, Grain Processing Corp., Muscatine, I.A.Google Scholar
  11. Anon, (undated (c)) N-Oil® II, Technical Service Bulletin 15889-238, National Starch, Chemical Division, Bridgewater, N.J.Google Scholar
  12. Armbruster, F.C. and Harjes, C.F. (1969) Chem. Abstr. 70, 48867K.Google Scholar
  13. Armbruster, F.C. and Harjes, C.F. (1971) US Patent 3 560 343.Google Scholar
  14. Barker, S.A., Kennedy, J.F. and Somers, PJ. (1968) Carbohydr. Res. 8, 482.CrossRefGoogle Scholar
  15. Ben-Bassat, A.I. and Grushka, E. (1991) J. Liq. Chromatogr. 14, 1051.CrossRefGoogle Scholar
  16. Bergeron, R.J., Channing, M.A., Gibeily, G.J. and Pillor, D.M. (1977) J. Am. Chem. Soc. 99, 5146.CrossRefGoogle Scholar
  17. Chaplin, M.F. and Bucke, C. (1990) Enzyme Technology, Cambridge University Press, Cambridge, p. 72.Google Scholar
  18. Cramer, F. and Henglein, M. (1956) Angew. Chem. 68, 649.Google Scholar
  19. Derler, H., Hörmeyer, H.F. and Bonn, G. (1988) J. Chromatogr. Anal. Biochem. 440, 281.Google Scholar
  20. Folkes, D.J. and Taylor P.W. (1982) In HPLC in Food Analysis (ed. R. Macrae), Academic Press, London, p. 149.Google Scholar
  21. French, D. (1957) Adv. Carbohydr. Chem. 12, 189.CrossRefGoogle Scholar
  22. Hamilton, R.M. and Heady, R.E. (1970) US Patent, 3 528 819.Google Scholar
  23. Hernandez, L.M., Ballou, L. and Ballou, C.L. (1990) Carbohydr. Res. 203, 1.CrossRefGoogle Scholar
  24. Heyraud, A. and Rinaudo, M. (1991) Biotechnology of Amylodextrin Oligosaccharides (ed. R.B. Friedman), ACS Symposium Series 458, p. 171.Google Scholar
  25. Hunt B.J. and Holding S.R. (1989) Size Exclusion Chromatography, Blackie Academic, Glasgow, p. 3.Google Scholar
  26. Kaper, F.S. and Gruppen, H. (1987) Food Technol. 41, 3, 112.Google Scholar
  27. Kennedy, J.F. and White, C.A. (1983) Bioactive Carbohydrates in Chemistry, Biochemistry and Biology, Ellis Horwood, Chichester, p. 76.Google Scholar
  28. Klis, J.B. (1984) Food Technol. 38, 11, 92.Google Scholar
  29. Koizumi, K. Kubota, Y., Tanimoto, T. and Okada, Y. (1989) J. Chromatogr. 464, 365.Google Scholar
  30. LaBell, F. and Duxbury, D. (1990) Food Processing 51, 8, 88.Google Scholar
  31. Lim, C.K. (ed.) (1986) HPLC of Small Molecules, IRL Press, Oxford, p. 1.Google Scholar
  32. Macrae, R. (ed.) (1982) HPLC in Food Analysis, Academic Press, London.Google Scholar
  33. Morehouse, A.L., Malzahn, R.C. and Day, J.T. (1972a) U.S. Patent 3 663 369.Google Scholar
  34. Morehouse, A.L., Malzahn, R.C. and Day, J.T. (1972b) Chem. Abstr. 77, 33147W.Google Scholar
  35. Morris, C.E. (1984) Food Eng. 56, 7, 48.Google Scholar
  36. Nakamura, N. and Hara, K. (1993) Oligosaccharides — Production, Properties and Applications, Japanese Technology Reviews, Section E: Biotechnology (ed. T. Nakakuki), Gordon and Breach Science, p. 25.Google Scholar
  37. Pszczola, D.E. (1991) Food Technol. 45, 8, 262.Google Scholar
  38. Schierbaum, F.R., Vorwerg, W., Kettlitz, B. and Reuther, F. (1986) Nahrung/Food 30, 1047.CrossRefGoogle Scholar
  39. Schwarzenbach, R. (1976) J. Chromatogr. 117, 206.CrossRefGoogle Scholar
  40. Scott, F.W. and Hatina, G. (1988) J. Food Sci. 53, 264.CrossRefGoogle Scholar
  41. Simpson, J.M. (1993) Protein Purification Process Engineering (ed. R.G. Harrison), Marcel Dekker, p. 209.Google Scholar
  42. Solms, J. and Egli, R.H. (1965) Helv. Chim. Acta 48, 1225.CrossRefGoogle Scholar
  43. Szejtli, J. (1969) Die Stärke 21, 163.CrossRefGoogle Scholar
  44. Szejtli, J. (1988) In Cyclodextrin Technology, Kluwer.Google Scholar
  45. Szejtli, J. and Budai, Z. (1976) Acta Chim. Acad. Sci. Hung. 91, 73.Google Scholar
  46. Szejtli, J., Fenyvesi, E. and Zsadon, B. (1978) Die Stärke 30, 127.CrossRefGoogle Scholar
  47. Szepesi, G. (1992) How to use Reverse-Phase HPLC, VCH, Weinheim, p. 19.Google Scholar
  48. Vorwerg, W., Schierbaum, F.R., Reuther, F. and Kettlitz, B. (1988) In Biological and Synthetic Polymer Networks (ed. O. Kramer), Elsevier Applied Science, London, p. 127.CrossRefGoogle Scholar
  49. Wang, W., Lundgren, T., Lindh, F., Nilsson, B., Grönberg, G., Brown, J.P., Mentzer-Dibert, H. and Zopf, D. (1992) Arch. Biochem. Biophys. 292, 433.CrossRefGoogle Scholar
  50. Wells, G.B. and Lester, R.L. (1979) Anal. Biochem. 97, 184.CrossRefGoogle Scholar
  51. Wiedenhof, N. (1969) Die Stärke 21, 163.CrossRefGoogle Scholar
  52. Wiedenhof, N., Lammers, J.N.J.J., Van Panthaleon, C.L. and Van Eck, B. (1969) Die Stärke 21, 119.CrossRefGoogle Scholar
  53. Ziesenitz, S.C. and Siebert, G. (1987) In Developments in Sweeteners — 3 (ed. T.H. Granby), Elsevier Applied Science, New York, p. 109.Google Scholar
  54. Zsadon, B., Szilasi, M., Szejtli, J., Seres, G. and Tüdös, F. (1978) Die Stärke 30, 276.CrossRefGoogle Scholar
  55. Zsadon, B. Otta, K., Tüdös, F. and Szejtli, J. (1979) J. Chromatogr. 172, 490.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • J. F. Kennedy
  • C. J. Knill
  • D. W. Taylor

There are no affiliations available

Personalised recommendations