Advertisement

Fat Products Using Chemical and Enzymatic Interesterification

  • A. Huyghebaert
  • D. Verhaeghe
  • H. De Moor

Summary

Interesterification involves the exchange and redistribution of acyl groups among triglycerides and can be divided into three groups according to the reaction type: acidolysis, alcoholysis and ester interchange. Interesterification can be done chemically or enzymatically.

The raw material for chemical interesterification has to satisfy different quality criteria depending upon the catalyst used. Two important types of interesterification are used. By random interesterification with a catalyst the acyl groups are redistributed until a random equilibrium is achieved. The specific glyceride distribution of milkfat (asymmetric) offers an opportunity for modifying milkfat by randomization. A uniform distribution or a rearrangement of fatty acids is pursued. By removing part of the fatty acids or triglycerides from the reaction mixture the equilibrium in the liquid phase is disturbed and by continuing the reaction a new equilibrium is formed in the directed interesterification. Directed interesterification brings about greater changes than random interesterification. Physical properties are affected by the content of side reaction products and must be removed by deodorization by which the typical milkfat flavour is destroyed.

The enzymes used as catalysts are extracellular microbial lipases and catalyse the hydrolysis of fats. The reaction is reversible. One of the advantages of enzymes is their specificity. Lipases show several types of specificity (substrate, positional, fatty acid and stereospecificity). Nonspecific lipases produce triglycerides that are similar to those obtained by chemical interesterification. By using specific lipases it is possible to produce triglyceride mixtures which are unobtainable by chemical interesterification. Lipase catalysed interesterification produces side reactions but recent research suggests that in the future side product formation can be controlled by using suitable media. The production costs are higher due to the enzymes.

Chemical interesterification is used industrially to produce fats and oils used in margarines, shortenings and confectionery fats.

Keywords

Cocoa Butter Immobilize Lipase Beef Tallow Chemical Interesterification Acyl Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharyya, D. K. & Bhattacharyya, S. (1988) Enzymatic acidolysis reaction of some fats. In: Proceedings World Conference on Biotechnology in Fats and Oils Industry 1987, Applewhite, T. H. (Ed.), American Oil Chemists’ Society, pp. 308–9.Google Scholar
  2. Chakrabarty, M. M. (1985) Interesterification reaction of glycerides and their industrial uses (including a discussion of India’s edible oil deficits and possible remedies). Journal of the Indian Chemical Society, 62, 1–6.Google Scholar
  3. Chakrabarty, M. M., Chaudhuri, S. G.,Khatoon, S. & Chatterjee, A. (1988) Comparison of biointeresterification reaction and conventional processes for the preparation of vanaspati and other valuable products. In: Proceedings World Conference on Biotechnology for the Fats and Oils Industry 1987, Applewhite, T. H. (Ed.), American Oil Chemists’ Society, pp. 288–9.Google Scholar
  4. Chang, J., Yamauchi, K. & Tsugo, T. (1969) Alteration of chemical and physical properties of butterfat by interesterification. Journal of Food Science and Technology Tokyo, 16, 446–52.CrossRefGoogle Scholar
  5. Christophe, A., Matthys, F., Geers, R. & Verdonk, G. (1978) Nutritional studies with randomized butter. Cholesteremic effects of butter oil and randomized butter oil in man. Archives Internationales de Physiologie et de Biochimie, 86, 413–15.Google Scholar
  6. Christophe, A., Iliano L., Verdonk, G. & Lauwers, A. (1981) Studies on the hydrolysis by pancreatic lipase of native and randomized butter fat. Archives Internationales de Physiologie et de Biochimie, 89 (B), 156–7.Google Scholar
  7. Christophe, A., Verdonk, G., Decatelle, J. & Huyghebaert, A. (1982) Studies on the chylomicronemic response of loading natural or randomized butter fat. Archives Internationales de Physiologie et de Biochimie, 90 (B), 100–1.Google Scholar
  8. Coleman, M. H. & Macrae, A. R. (1980) Fat process and composition. GB Patent Specification 1,577,933,Unilever.Google Scholar
  9. Coleman, M.H. & Macrae, A. R. (1981) Fat process and composition. US Patent 4,275,081, Lever Brothers Co., New York.Google Scholar
  10. De Man, J. M. (1961a) Physical properties of milk fat. I. Influence of chemical modification. Journal of Dairy Research, 28, 81–6.CrossRefGoogle Scholar
  11. De M an, J. M.(1961b) Physical properties of milk fat. II. Some factors influencing crystallization. Journal of Dairy Research, 28, 117–22.CrossRefGoogle Scholar
  12. Eigtved, P. (1984) Method for production of an immobilized lipase preparation and use thereof. DK Patent Application, 2510.200, Novo Industri.Google Scholar
  13. Eigtved, P., Hansen, T. T. & Miller, C. A. (1988) Ester synthesis with immobilized lipases. In: Proceedings World Conference on Biotechnology for the Fats and Oils Industry 1987, Applewhite, T. H. (Ed.), American Oil Chemists’ Society, pp. 134–7.Google Scholar
  14. Goderis, H. (1986) Immobilized lipase activity in organic reaction media of controlled humidity. PhD Thesis, Leuven, Belgium, Faculty of Agricultural Sciences.Google Scholar
  15. Going, L. H. (1967) Interesterification products and processes. Journal of the American Oil Chemists’ Society, 44, 414–56.CrossRefGoogle Scholar
  16. Gunstone, F. D. & Norris, F. A. (1983) Lipids in Foods, Chemistry, Biochemistry and Technology, Maxwell, R. (Ed.), Pergamon Press, Oxford, pp. 144–6..Google Scholar
  17. Gurr, M.I.(1983) The nutritional significance of lipids. In: Developments in Dairy Chemistry-2-Lipids, Fox, P. F. (Ed.), Applied Science Publishers, London, pp. 365–417.CrossRefGoogle Scholar
  18. Hamilton, R. J. & Bhati, A. (1980) Fats and Oils: Chemistry and Technology, Applied Science Publishers Ltd, London, 255 pp.Google Scholar
  19. Hansen, T. T. & Eigtved, P. (1985) A new immobilized lipase for interesterification and ester synthesis. Novo Publication A-05930a, Bagsvaerd, Denmark.Google Scholar
  20. Hirota, Y., Tanaka, Y. & Urata, K. (1985) Verfahren zur Umesterung von Fetten und Ölen und Enzympräparat. DE 3519, 429, Kao Corp.Google Scholar
  21. Holemans, P., Schijf, R., Van Putte, K. & De Man, T. (1986) Fats and edible emulsions with a high content of cis-polyunsaturated fatty acids. European Patent Application 209 176, Unilever N.V.Google Scholar
  22. Jensen, R. G., Dejong, F. A. & Clark, R. M. (1983) Determination of lipase specificity. Lipids, 18, 239–52.CrossRefGoogle Scholar
  23. Kacherauskis, D. (1966) Effect of re-esterification on physical and mechanical properties of manufactured milk fat. XVII International Dairy Congress Section C-2, Heinrichs, E. (Ed.), Hildesheim, pp. 161–6.Google Scholar
  24. Kalo, P. & Antila, A. (1989) Interesterification of milk fat. B-Doc 164- Addendum. IDF. Annual Sessions in Copenhagen, September 1989, pp. 1–5.Google Scholar
  25. Kalo, P., Parviainen, P., Vaara, K, Ali-Yrrkö, S. & Antila, M.(1986a) Changes in the triglyceride composition of butter fat induced by lipase and sodium methoxide catalysed interesterification reactions. Milchwissenschaft, 41, 82–5.Google Scholar
  26. Kalo, P., Vaara, K. & Antila, M. (1986b) Changes in triglyceride composition and melting properties of butter fat solid fraction/rapeseed oil mixtures induced by lipase catalysed interesterification. Fette, Seifen, Anstrichmittel, 88, 362–5.CrossRefGoogle Scholar
  27. Kalo, P., Perttilä, M., Kemppinen, A. & Antila, A.(1988) Modification of butter fat by interesterification catalysed by Aspergillus niger and Mucor mieheilipases. Meijeritieteellinen Aikakauskirja, 46, 36–47.Google Scholar
  28. Knox, T. & Cliffe, K. R. (1984) Synthesis of long-chain esters in a loop reactor system using a fungal cell bound enzyme. Process Biochemistry, 10, 188–92..Google Scholar
  29. Kurashige, J.(1988) Enzymatic conversion of diglycerides to triglycerides in palm oils. In: Proceedings World Conference on Biotechnology for the Fats and Oils Industry 1987, Applewhite, T. H. (Ed.) American Oil Chemists’ Society, pp. 138-40.Google Scholar
  30. Kwon, D. Y. & Rhee, J. S. (1985) Effects of organic solvents on lipase for interesterification of fats and oils. Korean Journal of Food Science and Technology, 17, 490–4.Google Scholar
  31. Lavayre, J. & Baratti, J. (1982) Preparation of immobilized lipases. Biotechnology and Bioengineering, 24, 1007–13.CrossRefGoogle Scholar
  32. List, G. R., Emken, E. A., Kwolek, W. F., Simpson, T. D. & Dutton, H. J. (1977) “Zero trans” margarines: preparation, structure, and properties of interesterified soybean oil-soy trisaturate blends. Journal of the American Oil Chemists’ Society, 54, 408–13.CrossRefGoogle Scholar
  33. Lo, Y. C. & Handel, A.P. (1983) Physical and chemical properties of randomly interesterified blends of soybean oil and tallow for use as margarine oils. Journal of the American Oil Chemists’ Society, 60, 815–18.CrossRefGoogle Scholar
  34. Luck, T., Kiesser, T. & Bauer, W. (1988) Engineering parameters for the application of immobilized lipases in a solvent-free system. In Proceedings World Conference on Biotechnology for the Fats and Oils Industry 1987, Applewhite, T. H. (Ed.), American Oil Chemists’ Society, pp. 343–5.Google Scholar
  35. Macrae, A. R. (1983) Extracellular microbial lipases. In: Microbial Enzymes and Technology, chap. 5, Fogarty, W. M. (Ed.), Applied Science, London, pp. 225–50.Google Scholar
  36. Macrae, A. R. (1985) Interesterification of fats and oils. In: Studies in Organic Chemistry 22: Biocatalysts in Organic Synthesis.Proceedings of an international symposium held at Noordwijkerhout, The Netherlands, 14–17 April 1985, Tramper, T. (Ed.) Elsevier, Amsterdam, pp. 195–208.Google Scholar
  37. Macrae, A. R. (1986) Edible fats. European Patent Application 185,524, Unilever N.V.Google Scholar
  38. Macrae, A.R. & Hammond, R. C. (1985) Present and future applications of lipases. Biotechnology and Genetic Engineering Reviews, 3, 193–217.Google Scholar
  39. Matsuo, T., Sawamura, N., Hashimoto, Y. & Hashida, W. (1980) Producing a cacao butter substitute by transesterification of fats and oils. UK Patent Application 2,045,359, Fuji Oil Co. Ltd.Google Scholar
  40. Matsuo, T., Sawamura, N., Hashimoto, Y. & Hashida, W. (1981) Method for modification of fats and oils. Australian Patent Application 77,623, Fuji Oil Co. Ltd.Google Scholar
  41. Matsuo, T., Sawamura, N., Hashimoto, Y. & Hashida, W. (1983) Method for modification of fats and oils. US Patent 4,420,560, Fuji Oil Co. Ltd.Google Scholar
  42. Matsuo, T., Hashimoto, Y. & Hhashida, W. (1984) Method for enzymatic interesterification of lipid and enzyme used therein. European Patent Specification 35,883, Fuji Oil Co. Ltd.Google Scholar
  43. Mickle, J. B. (1959) Factors affecting the spreadability of butter. Journal of Dairy Science, 42, 389.Google Scholar
  44. Mickle, J. B. (1960) Flavour problems in rearranged milk fat. Journal of Dairy Science, 43, 436–7.Google Scholar
  45. Mickle, J. B., Von Gunten, R. L. & Morrison, R. D. (1963) Rearrangement of milk fat as a means for adjusting hardness of butterlike products. Journal of Dairy Science, 46, 1357–61.CrossRefGoogle Scholar
  46. Nakamura, K., Yokomichi, H., Okisaka, K., Nishide, T., Kawahara, Y. & Nomura, S. (1988) Process for transesterifying fats. European Patent Application EP 0257,388A2, Kao Corporation.Google Scholar
  47. Nielsen, T. (1985) Industrial application possibilities for lipase. Fette, Seifen, Anstrichmittel, 87,15–19.CrossRefGoogle Scholar
  48. Parodi, P. W. (1979) Relationship between trisaturated glyceride composition and the softening point of milk fat. Journal of Dairy Research, 46, 633–9.CrossRefGoogle Scholar
  49. Parviainen, P., Vaara, K., Ali-Yrrkö, S. & Antila, M. (1986) Changes in the triglyceride composition of butterfat induced by lipase and sodium methoxide catalysed interesterification reactions. Milchwissenschaft, 41, 82–5.Google Scholar
  50. Patterson, J. D. E., Blain, J. A., Shaw, C. E. L., Todd, R. & BELL, G. (1979)Synthesis of glycerides and esters by fungal cell-bound enzymes in continuous reactor systems. Biotechnology Letters, 1, 211–16.CrossRefGoogle Scholar
  51. Posorske, L. H. (1984) Industrial-scale application of enzymes to the fats and oil industry. Journal of the American Oil Chemists’ Society, 61, 1758–60.CrossRefGoogle Scholar
  52. Posorske, L. H., Lefebvre, G. K., Miller, C. A., Hansen, T. T. & Glenvig,B. L.(1988) Process considerations of continuous fat modification with an immobilized lipase. Journal of the American Oil Chemists’ Society,65, 922–6.CrossRefGoogle Scholar
  53. Riel, R. R. (1966) Etudes de propriétés dilatométriques et meltométriques de la graisse de lait modifiée. In: XVII International Dairy Congress Section C: 2, Heinrichs, E. (Ed.), Hildesheim, pp. 295–302.Google Scholar
  54. Schmid, R. D. (1986) Innovationsfeld Biotechnology-Ansatzpunkte in der Fettchemie. Fette, Seifen, Anstrichmittel, 88, 555–60.CrossRefGoogle Scholar
  55. Schuch, R. & Mukherjee, K. M. (1987) Interesterification of lipids using an immobilized sn-1,3-specific triacylglycerol lipase. Journal of Agricultural and Food Chemistry, 35, 1005–8.CrossRefGoogle Scholar
  56. Schuch, R. & Mukherjee, K. D. (1988) Interesterification of lipids by an sn-1,3- specific triacylglycerol lipase. In: Proceedings World Conference on Biotechnology for the Fats and Oils Industry 1987, Applewhite, T. H. (Ed.), American Oil Chemists’ Society, pp. 328–9.Google Scholar
  57. Sonntag, N. O. V. (1982) Fat splitting, esterification and interesterification. In: Baileys Industrial Oil and Fat Products, Vol2, Swern, D. (Ed.), John Wiley, New York, pp. 127–74.Google Scholar
  58. Sreenivasan, R. (1978) Interesterification of fats. Journal of the American Oil Chemists’ Society, 55, 796–805.CrossRefGoogle Scholar
  59. Stevenson, R. W., Luddy, F. E. & Rothbart, H. L. (1979) Enzymatic acyl exchange to vary saturation in di- and triglycerides. Journal of the American Oil Chemists’ Society, 56, 676–80.CrossRefGoogle Scholar
  60. Tamaura, Y., Takahashi, K., Kodera, Y., Saito, Y. & Inada, Y. (1986) Chemical modification of lipase with ferromagnetic modifier—a ferromagnetic modified lipase. Biotechnology Letters, 8, 877–80.CrossRefGoogle Scholar
  61. Tanaka, A., Kawamoto, T., Kawase, M., Nanko, T. & Sonomoto, K. (1988) Immobilized lipases in organic solvents. In: Proceedings World Conference on Biotechnology for the Fats and Oils Industry 1987, Applewhite, T. H. (Ed.), American Oil Chemists’ Society, pp. 123–30.Google Scholar
  62. Tanaka, T., Ono, E., Ishihara, M., Yamanaka, S. & Takinami, K. (1981a) Enzymatic acyl exchange of triglyceride in n-hexane. Agricultural and Biological Chemistry, 45, 2387–9.CrossRefGoogle Scholar
  63. Tanaka, T., Ono, E. & Takinami, K. (1981b) Method of producing improved glyceride by lipase. US Patent 4,275,011, Ajinomoto Co.Google Scholar
  64. Timmen, H. (1978) Modifizierte Milchfette: Herstellung, Charakterisierung, Verwendung. Deutsche Milchwirtschaft, 29, 1127–34.Google Scholar
  65. Timms, R. E. (1979) The physical properties of blends of milk fat with beef tallow and beef tallow fractions. Australian Journal of Dairy Technology, 34, 60–5.Google Scholar
  66. Timms, R.E. & Parekh, J. V. (1980) The possibilities for using hydrogenated, fractionated or interesterified milk fat in chocolate. Lebensmittel Wissenschaft und Technology, 13, 177–81.Google Scholar
  67. Unilever(1986) Fat processing. European Patent Specification 64, 855, Unilever NV.Google Scholar
  68. Walstra, P. & Jenness, R. (1984) Dairy Chemistry and Physics, John Wiley, New York, 467 pp.Google Scholar
  69. Weihe, H. D. (1961) Interesterified butter oil. Journal of Dairy Science, 46, 944–7.CrossRefGoogle Scholar
  70. Weihe, H. D. & Greenbank, G.R. (1958) Properties of interesterified butteroil. Journal of Dairy Science, 41, 703.Google Scholar
  71. Wisdom, R. A., Dunnill, P., Macrae, A. & Lilly, M. D. (1984) Enzymic interesterification of fats: factors influencing the choice of support for immobilized lipase. Enzyme and Microbial Technology, 6, 443–6.CrossRefGoogle Scholar
  72. Wisdom, R. A., Dunnill, P. & Lilly, M. D. (1987) Enzymic interesterification of fats: laboratory and pilot scale studies with immobilized lipase from Rhizopus arrhizus. Biotechnology and Bioengineering, 29, 1081–5.CrossRefGoogle Scholar
  73. Yokozeki, K., Tanaka, T., Yamanaka, S., Takinami, T., Hirese, Y., Sonomoto, K., Tanaka, A. & Fukui, S.(1982a) Ester exchange of triglyceride by entrapped lipase in organic solvent. In: Enzyme Engineering 6, Chibata, I., Fukui, S. & Wingard, L. B. (Eds), Plenum Press, New York, pp. 151–2.Google Scholar
  74. Yokozeki, K., Yamanaka, S., Takinami, K., Hirose, Y., Tanaka, A. & Sonomoto, K.(1982b) Application of immobilized lipase to regio-specific interesterification of triglyceride in organic solvent. European Journal of Applied Microbiology and Biotechnology, 14, 1–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • A. Huyghebaert
  • D. Verhaeghe
    • 1
  • H. De Moor
    • 1
  1. 1.Laboratory of Food Technology, Chemistry and MicrobiologyState University of GhentBelgium

Personalised recommendations