Skip to main content

Abstract

In addition to being a concentrated source of energy, fats and oils supply essential fatty acids and fat-soluble vitamins, contribute greatly to the feeling of satiety and make foods more palatable. High quality fats and oils are bland, odorless, free from impurities, and are oxidatively stable. However, fats and oils may become oxidized during processing, storage and usage. While oil processing is designed partly to remove or destroy oxidized products or factors that may initiate or enhance oxidative reactions, some processing steps, such as caustic refining and bleaching, may promote oxidation. Also, oxidative reactions may lead to the breakdown and formation of compounds that give the rancid odor and flavor during storage. Furthermore, products of hydrolysis, cleavage and polymerization may be formed when fats and oils are subjected to high temperature treatment as in home and commercial culinary practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, J.C. (1986) Heated and oxidized fats. In Progress in Clinical and Biological Research, Vol. 222. Dietary Fat and Cancer, eds. C. JP., D.F. Birt, A.B. Rogers and M. Curtis, Alan R. Liss New York, pp. 185-209.

    Google Scholar 

  • Andia, A.G. and Street, J.C. (1975) Dietary induction of hepatic microsomal enzymes by thermally oxidized fats. J. Agric. Food Chem. 23, 173–177.

    CAS  Google Scholar 

  • Andreis, P.G., Whitfield, J.F. and Armato, U. (1981) Simulation of DNA synthesis and mitosis of hepatocytes in primary cultures of neonatal rat liver by arachidonic acid and prostaglandins. Exp. Cell Res. 134, 265–272.

    CAS  Google Scholar 

  • Anon (1992) Technical Advertisement, Close the loop, Inform, 3, 1084.

    Google Scholar 

  • Antonenkov, V.D., Pirozhkov, S.V. and Panchenko, L.F. (1987) On the role of aldehyde dehydrogenase in metabolism of aldehydic products of lipid peroxidation. FEBS Lett. 224, 357–360.

    CAS  Google Scholar 

  • Artman, N.R. (1969) The chemical and biological properties of heated and oxidized fats. Adv. Lipid Res. 7, 245–330.

    CAS  Google Scholar 

  • Aust, S.D., Morehouse, L.A. and Thomas, C.E. (1985) Role of metals in oxygen radical reactions. J. Free Radical Biol. Med. 1, 3–25.

    CAS  Google Scholar 

  • Balcavage, W.X. and Alvager, T.K. (1982) Reaction of malonaldehyde with mitochondrial membranes. Mech. Ageing Dev. 19, 159–170.

    CAS  Google Scholar 

  • Begin, M.E. (1987) Effect of polyunsaturated fatty acids and of their oxidation products on cell survival. Chem. Phys. Lipids 45, 269–314.

    CAS  Google Scholar 

  • Benedetti, A., Comporti, M. and Esterbauer, H. (1980) Indentification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim. Biophys. Acta 620, 281–296.

    CAS  Google Scholar 

  • Benedetti, A., Pompella, A., Fulceri, R., Romani, A. and Comporti, M. (1986) Detection of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene poisoned mice. Biochim. Biophys. Acta 876, 658–666.

    CAS  Google Scholar 

  • Bergan, J.G. and Draper, H.H. (1970) Absorption and metabolism of 1-14C-methyl linoleate hydroperoxide. Lipids 5, 976–982.

    CAS  Google Scholar 

  • Bhalerao, V.R., Inoue, M. and Kummerow, F.A. (1963) Fatty acid composition of lymph lipids from rats fed fresh thermally oxidized fats. J. Dairy Sci. 46, 176–180.

    CAS  Google Scholar 

  • Bird, R.P., Basrur, P.K. and Alexander, J.C. (1981) Cytotoxicity of thermally oxidized fats. In vitro 17, 397–404.

    CAS  Google Scholar 

  • Bird, R.P., Drapper, H.H. and Valli, V.E. (1982) Toxicological evaluation of malonaldehyde: a 12-month study of mice. J. Toxicol. Environ. Health 10, 897–905.

    CAS  Google Scholar 

  • Brambilla, G., Sciaba, L., Faggin, P., Maura, A., Marinari, U.M., Ferro, M. and Esterbauer, H (1986) Cytotoxicity, DNA fragmentation and sister-chromatid exchanges in Chinese hamster ovary cells exposed to the lipid peroxidation products 4-hydroxynonenal and homologous aldehydes. Mutat. Res. 190, 169–176.

    Google Scholar 

  • Brooks, B.R. and Kalmerth, O.L. (1968) Interaction of DNA with bifunctional aldehyde. Eur. J. Biochem. 5, 178–182.

    CAS  Google Scholar 

  • Burklund, S.A. (1992) Filtercorp, Woodenville, WA, personal communication.

    Google Scholar 

  • Chan, H.W.S. (1987) Oxygen free radicals in food. Proc. Nutr. Soc. 46, 35–41.

    CAS  Google Scholar 

  • Chang, S.S., Peterson, R.J. and Ho, C.T. (1978) Chemical reactions involved in the deep-frying of foods. J. Am. oil Chem. Soc. 55, 718–727.

    CAS  Google Scholar 

  • Chow, C.K. (1979) Nutritional influence on cellular antioxidant defense systems. Am. J. Clin. Nutr. 32, 1066–1081.

    CAS  Google Scholar 

  • Chow, C.K. (1988) Interrelationship of cellular antioxidant defense systems, in Cellular Antioxidant Defense Mechanisms, Vol. 2, ed. C.K. Chow, CRC Press, Baton Roca, FL, pp. 217-237.

    Google Scholar 

  • Chow, C.K. (1991) Vitamin E and oxidative stress. Free Radical Biol. Med. 11, 215–232.

    CAS  Google Scholar 

  • Chow, C.K. and Tappel, A.L. (1974) Response of glutathione peroxidase to dietary selenium in rats. J. Nutr. 104, 444–451.

    CAS  Google Scholar 

  • Combe, N., Constantin, M.J. and Entressangles, B. (1981) Lymphatic absorption of non-volatile oxidation products of heated oils in the rats. Lipids 16, 8–14.

    CAS  Google Scholar 

  • Corcos Benedetti, P., Di Felice, M., Gentili, V., Tagliamonte, B. and Tomassi, G. (1990) Influence of dietary thermally oxidized soybean oil on the oxidative status of rats of different ages. Ann. Nutr. Metab. 34, 221–231.

    CAS  Google Scholar 

  • Cortesi, R. and Privett, O.S. (1972) Toxicity of fatty ozonides and peroxides. Lipids 7, 715–721.

    CAS  Google Scholar 

  • Crawford, D.L., Sinnuhuber, R.O., Stout, F.M., Oldfield, J.E. and Kaufmes, J. (1965) Acute toxicity of malonaldehyde. Toxicol. Appl. Pharmacol. 7, 826–832.

    CAS  Google Scholar 

  • Curzio, M., Esterbauer, H., Di Mauro, C., Cechini, D. and Dianzani, M.U. (1986) Chemotactic activity of the lipid peroxidation 4-hydroxynonenal and homologous hydroxyalkenals. Biol. Chem. Hoppe-Seyler 367, 321–329.

    CAS  Google Scholar 

  • Curzio, M., Esterbauer, H., Di Mauro C. and Dianzani, M.U. (1990) Influence of the lipid peroxidation product 4-hydroxynonenal on human neutrophil migration. Int. J. Immunother. 6, 13–18.

    CAS  Google Scholar 

  • Dahle, L.K., Hill, E.G. and Holmam, R.T. (1962) The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters. Arch. Biochem. Biophys. 98, 253–261.

    CAS  Google Scholar 

  • DeMan, J.M. (1992) Chemical and physical properties of fatty acids, in Fatty Acids in Foods and Their Health Implications, ed. C.K. Chow, Marcel Dekker, New York, pp. 17-45.

    Google Scholar 

  • Draper, H.H. and Hadley, M. (1990) A review of recent studies on the metabolism of exogenous and characterization of malondialdehyde. Xenobiotica 20, 901–907.

    CAS  Google Scholar 

  • Dubouloz, P. and Laurent, J. (1950) A pigment which destroys certain lipid peroxides. C.R. Soc. Biol. 144, 1183–1185.

    CAS  Google Scholar 

  • Dubouloz, P., Laurent, J. and Dumas, J. (1951) Metabolism of lipid peroxides. I. Characterization of a hematin pigment which destroys lipid peroxides. Bull. Soc. Chem. Biol. 33, 1740–1744.

    CAS  Google Scholar 

  • Duthie, G.G., Wahle, K.W.J. and James, W.P.T. (1989) Oxidants, antioxidants and cardiovascular disease. Nutr. Res. Rev. 2, 51–62.

    CAS  Google Scholar 

  • El-Shattory, Y., Hegazy, S., Soliman, M.M. and Aly, S.M. (1991) Heated fats. Part 3. Biological affect and effect of heating and tempering oils on fatty acid composition of liver, heart and serum lipids of rats. Nahrung 35, 1007–1012.

    CAS  Google Scholar 

  • Esterbauer, H., Helmward, Z. and Schayr, R.J. (1988) Hydroxyalkenals: cytotoxic products of lipid peroxidation. ISI Atlas Sci.: Biochemistry 1, 311–317.

    CAS  Google Scholar 

  • Esterbauer, H., Schaur, R.J. and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol. Med. 11, 81–128.

    CAS  Google Scholar 

  • Esterbauer, H., Gebicki, J., Puhl, H. and Jurgen, G. (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biol. Med. 13, 341–390.

    CAS  Google Scholar 

  • Findlay, G.M., Draper, H.H. and Bergan, J.G. (1970) Metabolism of 1-14C-methyl linoleate hydroperoxides in the rabbit. Lipids 5, 970–975.

    CAS  Google Scholar 

  • Flohe, L., Gunzler, W.A. and Schock, H.H. (1973) Glutathione peroxidase — seleno-enzyme. FEBS Lett. 32, 132–134.

    CAS  Google Scholar 

  • Frankel, E.N. (1980) Lipid oxidation. Prog. Lipid Res. 19, 1–22.

    CAS  Google Scholar 

  • Frankel, E.N. (1982) Volatile lipid oxidation products. Prog. Lipid Res. 22, 1–33.

    Google Scholar 

  • Frankel, E.N. (1984) Lipid oxidation: mechanisms, products and biological significance, J. Am. Oil Chem. Soc. 61, 1908–1917.

    CAS  Google Scholar 

  • Frankel, E.N., Evans, C.D., Moser, H.A., McConnell, D.G. and Cowan, J.C. (1961) Analysis of lipids and oxidation products by partition chromatography: Dimeric and polymeric products. J. Am. oil Chem. Soc. 38, 130–134.

    CAS  Google Scholar 

  • Fritsch, C.W. (1981) Measurement of frying fat deterioration. J. Am. Oil Chem. Soc. 58, 172.

    Google Scholar 

  • Gamage, P.T., Mon, T. and Matsushita, S. (1971) Effects of linoleic acid hydroperoxides and their secondary products on the growth of E. coli. Agric. Biol. Chem. 35, 33–40.

    CAS  Google Scholar 

  • Gavino, V.C., Miller, J.S., Ikharebha, S.O., Milo, G.E. and Cornwell, D.G. (1981) Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J. Lipid Res. 22, 763–769.

    CAS  Google Scholar 

  • Giani, E., Masi, I. and Galli, C. (1985) Heated fat, vitamin E and vascular eicosanoids. Lipids 20, 439–448.

    CAS  Google Scholar 

  • Glavind, J. (1972) On the existence of lipid peroxide in animal tissues. Br. J. Nutr. 27, 19–26.

    CAS  Google Scholar 

  • Glavind, J. and Sylven, C. (1970) Intestinal absorption and lymphatic transport of methyl linoleate hydroperoxide and hydroxyoctadecadienoate in the rat. Acta Chem. Scand. 24, 3723-3728.

    CAS  Google Scholar 

  • Glavind, J. and Tryding, N. (1960) Digestion and absorption of lipoperoxides. Acta Physiol. Scand. 49, 97–102.

    CAS  Google Scholar 

  • Glavind, J., Hartmann, S., Clemmesen, J., Jessen, K.E. and Dam, H. (1952) Role of lipoperoxidases in human pathology. II. The presence of peroxidized lipids in the atherosclerotic aorta. Acta Pathol. Microbiol. Scand. 30, 1–6.

    CAS  Google Scholar 

  • Glavind, J., Christensen, F. and Sylven, C. (1971) Intestinal absorption and in vivo formation of lipoperoxides in vitamin E-deficient rats. Acta Chem. Scand. 25, 3220–3226.

    CAS  Google Scholar 

  • Gray, J.I. and Morton, I.D. (1981) Some toxic compounds produced in food by cooking and processing. J. Human Nutr. 35, 5–23.

    CAS  Google Scholar 

  • Gray, J.I. and Pearson, A.M. (1987) Rancidity and warmed-over flavor. Adv. Meat Res. 2, 221–269.

    Google Scholar 

  • Grossman, A. and Wendel, A. (1983) Non-reactivity of the selenoenzyme glutathione peroxidase with enzymatically peroxidized phospholipids. Eur. J. Biochem. 135, 549–552.

    Google Scholar 

  • Gunstone, F.D. (1984) Reaction of oxygen with unsaturated fatty acids and esters. J. Am. Oil Chem. Soc. 69, 127–129.

    Google Scholar 

  • Gupta, M.K. (1992) Designing frying fat, Am. Oil Chem. Soc. World Conference, Budapest, Hungary.

    Google Scholar 

  • Haber, S.L. and Wissler, R. W. (1962) Effect of vitamin E on carcinogenicity of methylcholanthrene. Proc. Soc. Exp. Biol. Med. 111, 774–775.

    CAS  Google Scholar 

  • Hageman, G., Verhagen H., Schutte, D. and Kleinjans, J. (1991) Biological effects of short term feeding to rats of repeatedly used deep frying fats in relation to fat mutagen content. Food Chem. Toxicol. 29, 689–698.

    CAS  Google Scholar 

  • Hennig, B. and Chow, C.K. (1988) Lipid peroxidation and endothelial cell injury: implication in atherosclerosis. Adv. Free Rad. Biol. Med. 4, 99–106.

    CAS  Google Scholar 

  • Hennig, B., Enoch, C. and Chow, C.K. (1986) Linoleic acid hydroperoxide increases the transfer of albumin across cultured endothelial monolayers. Arch. Biochem. Biophys. 248, 353–357.

    CAS  Google Scholar 

  • Hermans, C., Kummerow, F.H. and Perkins, E.G. (1973) Influence of protein and vitamin levels on the nutritional value of heated fats for rats. J. Nutr. 103, 1665–1672.

    Google Scholar 

  • Horgan, V.J., Philpot, J.S.L., Porter, B.W. and Roodyn, D.B. (1957) Toxicity of autoxidized squalene and linoleic acid, and of simple peroxides, in relation to toxicity of radiation. Biochemistry 67, 551–558.

    CAS  Google Scholar 

  • Horton, A.A. and Fairhurst, S. (1987) Lipid peroxidation and mechanisms of toxicity. CRC. Crit. Rev. Toxicol. 18, 27–79.

    CAS  Google Scholar 

  • Hsieh, R.J. and Kinsella, J.E. (1989) Oxidation of polyunsaturated fatty acids: mechanisms, products and inhibition with emphasis on fish. Adv. Food Nutr. Res. 33, 233–241.

    CAS  Google Scholar 

  • Huang, C.J. and Fwu, M.L. (1992) Protein insufficiency aggravates the enhanced lipid peroxidation and reduced activities of antioxidative enzymes in rats fed diet high in polyunsaturated fat. J. Nutr. 122, 1182–1189.

    CAS  Google Scholar 

  • Huang, C.J., Cheung, N.S. and Lu, V.R. (1988) Effects of deteriorated frying oil and dietary protein levels on liver microsomal enzymes in rats. Am. J. Oil Chem. Soc. 65, 1796-1803.

    CAS  Google Scholar 

  • Hubbard, R.W., Ono, Y. and Sanchez, A. (1989) Atherogenic effects of oxidized products of cholesterol. Prog. Food Nutr. Sci. 13, 17–44.

    CAS  Google Scholar 

  • Hunter, J.E. and Applegate, T.H. (1991) Reassessment of trans fatty acids availability in U.S. diet. Am. J. Clin. Nutr. 54, 363.

    CAS  Google Scholar 

  • Iritani, N., Fukuda, E. and Kitamura, Y. (1980) Effect of corn oil feeding on lipid peroxidation in rats. J. Nutr. 110, 924–930.

    CAS  Google Scholar 

  • Iwaoka, W.T. and Perkins, E.G. (1978) Metabolism and lipogenic effects of the cyclic monomers of methyl linolenate in the rat. J. Am. Oil Chem. Soc. 55, 734–738.

    CAS  Google Scholar 

  • Jain, S.K. (1984) The accumulation of malonaldehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes. J. Biol. Chem. 259, 3391–3394.

    CAS  Google Scholar 

  • Jain, S.K., Yip, R., Hoesch, R.M., Pramanik, A.K., Dallman, P.R. and Shohet, S.B. (1983) Evidence of peroxidative damage to the erythrocyte membrane in iron deficiency. Am. J. Clin. Nutr. 37, 26–30.

    CAS  Google Scholar 

  • James, W.P.T., Duthie, G.G. and Wahle, K.W.J. (1989) The Mediterranean diet: protective or simply non-toxic? Eur. J. Clin. Nutr. 43 (Suppl.), 31-41.

    Google Scholar 

  • Jethmalani, S.M., Viswanathan, G., Bandyopadhyay, C., Noronha, J.M. (1989) Effect of ingestion of thermally oxidized edible oils on plasma lipids, lipoproteins and postheparin lipolytic activity of rats. Indian J. Exp. Biol. 27, 1052–1055.

    CAS  Google Scholar 

  • Jurgens, G., Lang, J. and Esterbauer, H. (1986) Modification of human low-density lipoprotein by the peroxidation product 4-hydroxynonenal. Biochim. Biophys. Acta. 875, 103–114.

    CAS  Google Scholar 

  • Jurgens, G., Hoff, H.F., Chisolm, G.M. III and Esterbauer, H. (1987) Modification of human serum low density lipoprotein by oxidation — characterization and pathophysiological implications. Chem. Phys. Lipids 45, 315–336.

    CAS  Google Scholar 

  • Kajimoto, G. and Mukai, M. (1970) Toxicity of rancid oil. IX. Digestibility of polymerized fatty acids in thermally oxidized soybean oil. Yukagaku (J. Jpn. Oil Chem. Soc.) 19, 66-71.

    CAS  Google Scholar 

  • Kanazawa, K., Kanazawa, E. and Natake, M. (1985) Uptake of secondary autoxidation products of linoleic acid by the rat. Lipids 20, 412–419.

    CAS  Google Scholar 

  • Kaneda, T. and Miyazawa, T. (1987) Lipid peroxides and Nutr. World Rev. Nutr. Diet. 50, 186–214.

    CAS  Google Scholar 

  • Kanner, J. and Harel, S. (1985) Initiation of membranal lipid peroxidation by activated methemoglobin and methemoglobin. Arch. Biochem. Biophys. 237, 314–321.

    CAS  Google Scholar 

  • Kanner, J., German, J.B. and Kinsella, J.E. (1987) Initiation of lipid peroxidation in biological systems. CRC Crit. Rev. Food Sci. Nutr. 25, 317–354.

    CAS  Google Scholar 

  • Kargan, V.E., ed. (1988) Lipid Peroxidation in Biomembranes, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kaunitz, H. and Johnson, R.E. (1964) Nutritional effects of dihydroxystearic acid in rats. J. Am. Oil Chem. Soc. 41, 50–55.

    CAS  Google Scholar 

  • Kaunitz, H., Johnson, R.E. and Pegus, L. (1965) A long-term nutritional study with fresh and mildly oxidized vegetable and animal fats. J. Am. Oil Chem. Soc. 42, 770–774.

    CAS  Google Scholar 

  • Kaunitz, H. Slanetz, C.A., Knight, H.B., Johnson, R.E., Saunders, D.H. and Swern, D. (1956) Biological effects of the polymeric residues isolated from autoxidized fats. J. Am. Oil Chem. Soc. 33, 630–634.

    CAS  Google Scholar 

  • Kikuzawa, K., Kishikawa, K., Tokumura, A., Tsukatani, H. and Shibuya, M. (1985) Fluorescent pigments by covalent binding of lipid peroxidation by-products to protein and amino acids. Lipids 20, 854–861.

    Google Scholar 

  • Kikugawa, K., Tsukuda, K. and Kurechi, T. (1980) Studies on peroxidized lipids. I. Interaction of malonaldehyde with secondary amines and its relevance to nitrosamine formation. Chem. Pharm. Bull. 28, 3323–3331.

    CAS  Google Scholar 

  • Kokatnur, M.G., Bergan, J.G. and Draper, H.H. (1966) Observations on the decomposition of hemin by fatty acid hydroperoxides. Proc. Soc. Exp. Biol. Med. 123, 254–258.

    CAS  Google Scholar 

  • Kritchevsky, D. and Tepper, S.A. (1967) Cholesterol vehicle in experimental atherosclerosis. J. Atheroscl. Res. 7, 647–651.

    CAS  Google Scholar 

  • Krokan, H., Grafstrom, R.C., Sundqvist, K., Esterbauer, H. and Harris, C.C. (1985) Cytotoxicity, thiol depletion and inhibition of 06-methylguanine-DNA methyltransferase by various aldehydes in cultured human bronchial fibroblasts. Carcinogenesis 6, 1755–1759.

    CAS  Google Scholar 

  • Kubow, S. (1992) Routes of formation and toxic consequences of lipid oxidation products in foods. Free Radical Biol. Med. 12, 63–81.

    CAS  Google Scholar 

  • Kurechi, T., Kikugawa, K. and Ozawa, M. (1980) Effect of malonaldehyde on nitrosamine formation. Food Cosmet. Toxicol. 18, 119–122.

    CAS  Google Scholar 

  • Landers, R.E. and Rathamnn, D.M. (1981) Vegetable oils: effects of processing, storage and use on nutritional values. J. Am. Oil Chem. Soc. 58, 155–259.

    Google Scholar 

  • Little, C. and O’Brien, P.J. (1968) An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem. Biophys. Res. Commun. 31, 145–150.

    CAS  Google Scholar 

  • Marnett, L.J., Hurd, H.K., Hollstein, M.C., Levin, D.E., Esterbauer, H. and Ames, B.H. (1985) Naturally occurring carbonyl compounds are mutagens in the Salmonella tester strain TA 104. Mutat. Res. 148, 25–34.

    CAS  Google Scholar 

  • Michael, N.R., Alexander, J.C. and Artman, N.R. (1966) Thermal reactions of methyl linoleate. I. Heating conditions, isolation techniques, biological studies and chemical changes, Lipids 1, 353–358.

    CAS  Google Scholar 

  • Miller, K.W. and Long, P.H. (1990) A 91 day feeding study in rats with heated olestra/ vegetable oil blends. Food Chem. Toxicol. 20, 307–315.

    Google Scholar 

  • Miyashita, K., Fujimoto, K. and Kaneda, T. (1982) Formation of dimers during the initial stage of autoxidation in methyl linoleate. Agric. Biol. Chem. 46, 751–760.

    CAS  Google Scholar 

  • Mukai, F.H. and Goldstein, B.D. (1976) Mutagenicity of malonaldehyde, a product of peroxidized polyunsaturated fatty acids. Science 191, 868–869.

    CAS  Google Scholar 

  • Nawar, W.F. (1984) Chemical changes in lipids produced by thermal processing. J. Chem. Educ. 61, 299–302.

    CAS  Google Scholar 

  • Nawar, W.W. (1985a) Chemistry of thermal oxidation of lipids, in Flavor Chemistry of Fats and Oils. Am Oil Chem. Soc., Champaign, IL.

    Google Scholar 

  • Nawar, W.F. (1985b) Lipids, in Food Chemistry, ed. O.R. Fennema, Marcel Dekker, New York, pp. 139-244.

    Google Scholar 

  • Negishi, H., Fujimoto, K. and Kaneda, T. (1980) Effect of autoxidized methyl linoleate on glutathione peroxidase. J. Nutr. Sci. Vitaminol. 26, 309–317.

    CAS  Google Scholar 

  • Nishida, T.H., Tsuchiyama, H., Inoue, M. and Kummerow, F.A. (1960) Effect of intravenous injection of oxidized methyl esters of unsaturated fatty acids on chick encepha- lomalacia. Proc. Soc. Exp. Biol. Med. 105, 308–312.

    CAS  Google Scholar 

  • Nolen, G.A. (1973) A feeding study of used, partially hydrogenated soybean oil, frying fat in dogs. J. Nutr. 103, 1248–1255.

    CAS  Google Scholar 

  • Nolen, G.A., Alexander, J.C. and Artman, N.R. (1967) Long-term rat feeding study with used frying fats. J. Nutr. 93, 337–348.

    CAS  Google Scholar 

  • Oarada, M., Miyazawa, T. and Kaneda, T. (1986) Distribution of 14C after oral administration of [U-14C] labeled methyl linoleate hydroperoxide and their secondary products in rats. Lipids 21, 150–154.

    CAS  Google Scholar 

  • Olcott, H.S. and Dolev, A. (1963) Toxicity of fatty acid ester hydroperoxides. Proc. Soc. Exp. Biol. Med. 114, 820–822.

    CAS  Google Scholar 

  • Paquette, G. and Kupranycz van Voort, F.R. (1987) The mechanisms of lipid peroxidation. II. Primary oxidation products. Can. Inst. Food Sci. Technol. 18, 197–296.

    Google Scholar 

  • Perkins, E.G. and Taubold, R. (1978) Nutritional and metabolic studies on non-cyclic dimeric fatty acid methyl esters in the rat. J. Am. Oil Chem. Soc. 55, 632–634.

    CAS  Google Scholar 

  • Perkins, E.G., Endres, J.G. and Kummerow, F.A. (1961) Effect of ingested thermally oxidized corn oil on fat composition in the rat. Proc. Soc. Exp. Biol. Med. 106, 370–372.

    CAS  Google Scholar 

  • Poling, C.E., Warner, W.D., Mone, P.E. and Rice, E.E. (1960) The nutritional value of fats after use in commercial deep-fat frying. J. Nutr. 72, 109–120.

    CAS  Google Scholar 

  • Poling, C.E., Warner, W.D., Mone, P.E. and Rice, E.E. (1962) The influence of temperature, heating and aeration upon nutritive value of fats. J. Am. Oil Chem. Soc. 39, 315-320.

    CAS  Google Scholar 

  • Poling, C.E., Eagle, E., Rice, E.E. and Fisher, M. (1970) Long term responses of rats to heat-treated dietary fats. IV. Weight gains, food and energy efficiencies, longevity and histopathology. Lipids 5, 128–136.

    CAS  Google Scholar 

  • Privett, O.S. and Cortesi, R. (1972) Observation on the role of vitamin E in the toxicity of oxidized fats. Lipids 7, 780–787.

    CAS  Google Scholar 

  • Pryor, W.A., Stanley, J.P. and Blair, E. (1976) Autoxidation of polyunsaturated fatty acids. II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandinlike endoperoxides. Lipids 11, 370–379.

    CAS  Google Scholar 

  • Reddy, K. and Tappel, A.L. (1974) Effect of dietary selenium and autoxidized lipids on glutathione peroxidase system of gastrointestinal tract and other tissues in the rat. J. Nutr. 104, 1069–1078.

    CAS  Google Scholar 

  • Reiss, U., Tappel, A.L. and Chio, K.S. (1972) DNA-malonaldehyde reaction: Formation of fluorescent products. Biochem. Biophys. Res. Commun. 48, 921–926.

    CAS  Google Scholar 

  • Rhee, K.S. (1988) Enzymic and nonenzymic catalysis of lipid oxidation in muscle foods. Food Technol. 42, 127–132.

    CAS  Google Scholar 

  • Ribot, E., Grandgirard, A., Sebedio, J.L., Grynberg, A. and Athias, P. (1992) Incorporation of cyclic fatty acid monomers in lipids of rat heart cell cultures. Lipids 27, 79–81.

    CAS  Google Scholar 

  • Rotruck, J., Pope, A.L., Ganther, H., Swanson, A., Hofeman, D. and Hoekstra, W. (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588–590.

    CAS  Google Scholar 

  • Sanders, T.A.B. (1989) Nutritional aspects of rancidity, in Rancidity in Foods, eds. J.C. Allen and R.J. Hamilton, Elsevier, New York, pp. 125-139.

    Google Scholar 

  • Schauenstein, E., Esterbauer, H. and Zollner, H. (1977) Aldehydes in biological systems: their natural occurrence and biological activities, Pion, London.

    Google Scholar 

  • Schultz, H.W., Day, E.A. and Sinnhuber, R.O. (1962) Symposium on Foods: Lipids and Their Oxidation, AVI, Westport, CT.

    Google Scholar 

  • Segall, H.J., Wilson, D.W., Dallas, J.L. and Haddon, W.F. (1985) trans-4-Hydroxy-2-hexenal: a reactive metabolite from macrocyclic pyrrolizidine alkaloid senecionine. Science 229, 472–475.

    CAS  Google Scholar 

  • Seybold, J.E. (1992) P.Q. Corp., Valley Forge, PA, personal communication.

    Google Scholar 

  • Shamberger, R.J., Andreone, T.L. and Willis, C.E. (1974) Antioxidants and cancer. IV. Malonaldehyde has initiating activity as a carcinogen. J. Natl. Cancer Inst. 53, 1771–1773.

    CAS  Google Scholar 

  • Shamberger, R.J., Corlett, C.L., Beaman, K.D. and Kasten, B.L. (1979) Antioxidants and cancer. IX. Antioxidants reduce the mutagenic effect of malonaldehyde and betapropiolactone. Mutat. Res. 66, 349–355.

    CAS  Google Scholar 

  • Smith, L.L. and Johnson, B.H. (1989) Biological activities of oxysterols. Free Radical Biol. Med. 7, 285–332.

    CAS  Google Scholar 

  • Stewart, W.C. and Sinclair, R.G. (1945) The absence of ricinoleic acid from phospholipids of rats fed castor oil. Arch. Biochem. 8, 7–11.

    CAS  Google Scholar 

  • Sugai, M., Witting, L.A., Tsuchiyama, H. and Kummerow, F.A. (1962) The effect of heated fat on carcinogenic activity of 2-acetylaminofluorene. Cancer Res. 22, 510–519.

    CAS  Google Scholar 

  • Sturzenegger, A. and Strum, H. (1951) Hydrolysis of fat at high temperature. Ind. Eng. Chem. 43, 510.

    CAS  Google Scholar 

  • Tappel, A.L. (1972) Vitamin E and Free radical peroxidation of lipids. Ann. N.Y. Acad. Sci. 203, 12–28.

    CAS  Google Scholar 

  • Taub, I.A. (1984) Free radical reactions in food. J Chem. Educ. 61, 313–324.

    CAS  Google Scholar 

  • Taylor, A.J. (1987) Effects of water quality on lipid oxidation. Food Sci. Technol. Today 1, 158–159.

    Google Scholar 

  • Ursini, F., Mariorino, M., Valente, M. and Gregolin, C. (1982) Purification from pig liver of a protein which protects liposomes and biomembrane from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine liposome. Biochim. Biophys. Acta 710, 197–211.

    CAS  Google Scholar 

  • Ursini, F., Maioriono, M. and Gregolin, C. (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta 839, 62–70.

    CAS  Google Scholar 

  • Van Gastel, A., Mathur, R., Roy, V.V. and Rukmini, C. (1984) Ames mutagenicity tests of repeated heated edible oils. Food Chem. Toxicol. 22, 403–405.

    Google Scholar 

  • Vilas, N.N., Bell, R.R. and Draper, H.H. (1976) Influence of dietary peroxides, selenium and vitamin E on glutathione peroxidase of the gastrointestinal tract. J. Nutr. 106, 589-597.

    CAS  Google Scholar 

  • Wawra, E., Zollner, H., Schaur, R.J., Tillian, H.M. and Schauenstein, E. (1986) The inhibitory effect of 4-hydroxy-nonenal on DNA-polymerase alpha and beta from rat liver and rapidly dividing Yoshida ascites hepatoma. Cell Biochem. Funct. 4, 31–36.

    CAS  Google Scholar 

  • Wattenberg, L.W. (1972) Inhibition of carcinogenic and toxic effects of polycyclic hydrocarbons by phenolic antioxidant and ethoxyquin. J. Natl. Cancer Inst. 48, 1425–1430.

    CAS  Google Scholar 

  • Weil, C.S. (1970) Significance of organ-weight changes in food safety evaluation, in Metabolic Aspects of Food Safety, ed. J.C. Roe, Academic Press, New York, pp. 419-454.

    Google Scholar 

  • Weiss, T. (1970) Food Oils and their Use, AVI, Westport, CT.

    Google Scholar 

  • Witting, L.A., Nishida, T., Johnson, O.C. and Kummerow, F.A. (1957) The relationship of pyridoxine and riboflavin to the nutritional value of polymerized fats. J. Am. Oil Chem. Soc. 34, 421–424.

    CAS  Google Scholar 

  • Yau, T.M. (1979) Mutagenicity and cytotoxicity of malonaldehyde in mammalian cells. Mech. Ageing Dev. 11, 137–144.

    CAS  Google Scholar 

  • Yamamoto, S. (1991) ‘Enzymatic’ lipid peroxidation: reactions of mammalian lipoxygenases. Free Radical Biol. Med. 10, 149–159.

    CAS  Google Scholar 

  • Yoshioka, M. and Kaneda, T. (1972) Studies on the toxicity of the autoxidized oils. I. The fractionation of the toxic compound and its identification. Yukagaku (J. Jpn. Oil Chem. Soc.) 21, 316–321.

    CAS  Google Scholar 

  • Yoshioka, M. and Kaneda, T. (1974) Studies on the toxicity of the autoxidized oils. III. The toxicity of hydroperoxyalkenals. Yukagaku (J. Jpn. Oil Chem. Soc.) 23, 321–236.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chow, C.K., Gupta, M.K. (1994). Treatment, oxidation and health aspects of fats and oils. In: Kamel, B.S., Kakuda, Y. (eds) Technological Advances in Improved and Alternative Sources of Lipids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2109-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2109-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5878-7

  • Online ISBN: 978-1-4615-2109-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics