Skip to main content

Fundamental Principles of MRI

  • Chapter
  • 83 Accesses

Abstract

Accurate descriptions of the state of microscopic particles such as electrons, atoms, or nuclei generally require the use of quantum mechanics. For NMR experiments, the interaction of the nuclear magnetic moments with an applied internal field is used to examine the chemical environment within the sample. Magnetic moments arise from orbital angular momentum and spin angular momentum of a changed particle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belton, P. S., & Hills, B. P. 1987. The effects of diffusive exchange in heterogeneous systems on NMR line shapes and relaxation processes. Molecular Physics 61: 999–1018.

    Article  CAS  Google Scholar 

  • Bloch, F. 1946. Nuclear induction. Physical Review 70: 460–474.

    Article  CAS  Google Scholar 

  • Carr, H. Y., & Purcell, E. M. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review 94: 630–638.

    Article  CAS  Google Scholar 

  • Fukushima, E., & Roeder, S. B. W. 1981. Experimental pulse NMR: A nuts and bolts approach New York: Addison-Wesley.

    Google Scholar 

  • Haacke, E. M., Liang, Z.-P., & Tkach, J. A. 1988. T2-Deconvolution in MR imaging and spectroscopy. J. of Magnetic Resonance 76: 440–457.

    Google Scholar 

  • Hahn, E. L. 1950. Spin echoes. Physical Review 80: 580–594.

    Article  Google Scholar 

  • Lauterbur, P. C. 1973. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242: 190–191.

    Article  CAS  Google Scholar 

  • Maneval, J. E., McCarthy, M. J., & Whitaker, S. 1990. Use of nuclear magnetic resonance as an experimental probe in multiphase systems: Determination of the instrument weight function for measurements of liquid-phase volume fractions. Water Resources Research 26: 2807–2816.

    Google Scholar 

  • Marle, C. E. 1982. On macroscopic equations governing multiphase flow with diffusion and chemical reaction in porous media. Int. J. Engng. Sci. 20: 643–662.

    Article  CAS  Google Scholar 

  • McCarthy, M. J. 1990. Interpretation of the magnetic resonance imaging signal from a foam. AIChE J 36: 287–290.

    Article  CAS  Google Scholar 

  • Morris, P. G. 1986. Nuclear Magnetic Resonance Imaging in Medicine and Biology. New York: Oxford University Press.

    Google Scholar 

  • Whitaker, S. 1967. Diffusion and dispersion in porous media. AIChE J. 13: 420–427.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McCarthy, M.J. (1994). Fundamental Principles of MRI. In: Magnetic Resonance Imaging In Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2075-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2075-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5862-6

  • Online ISBN: 978-1-4615-2075-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics