Product Dimensional Metrology and Pattern Defect Inspection

  • Henri A. Khoury
  • Timothy R. Groves
  • Christian H. Plougonven


Non-destructive, on-line measurement and inspection of semiconductor products have become a very important process control function in the development and manufacturing of high density bipolar logic and memory array integrated circuit chips. Effective process control represents an essential factor in achieving higher yields, productivity and cost effectiveness in any manufacturing environment. One key way of achieving the process control objective is by integrating the collection, storage, analysis and display of measurement and inspection data at the work site. This approach helps the process engineer (1) better understand and identify the nature of an overall process problem or trend, (2) differentiate process from equipment performance problems, (3) implement corrective strategies traceable to problem sources, and (4) monitor and control process and tool critical parameters within upper and lower control limits from a mean target. Moreover, metrology and inspection functions are also important for determining process stability and establishing control baselines.


Control Chart Defect Density Pattern Placement Defect Inspection Metrology System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM Manual on Presentation of Data and Control Chart Analysis, STD 15D, American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.Google Scholar
  2. Batchelder, J. S. and Taubenblatt, M. A. 1989. Applied Physics Letters, Vol. 55, p. 215.CrossRefGoogle Scholar
  3. Bengtsson, H. and Yansen, D. E. 1990. SPIE Pro-ceedings Vol. 1261, p. 51.Google Scholar
  4. Berman, J. L. and Kino, G. S. 1991. “Pattern Recognition Approach to Trench Bottom-Width Measurements Using the Mirau Correlation Microscope.” SPIE Proceedings Vol. 1464.Google Scholar
  5. Billat, S. 1987. Semi-conductor International Vol. 6, p. 116.Google Scholar
  6. Binnig, G., Rohrer, H., Guber, C., and Weibel, E. 1983. Physics Review Letter 50, p. 120.CrossRefGoogle Scholar
  7. Binnig, G., Quate, C. F., and Gerber, C. 1986. “Atomic Force Microscope.” Physics Review Letter 56, pp. 930–933.CrossRefGoogle Scholar
  8. Burrgraaf, P. 1988. Semi-conductor International Vol. 13, p. 54.Google Scholar
  9. Cavan, D. L. et al. 1988. J. Vac. Sci. Technol. Vol. B6, No. 6, p. 1934.CrossRefGoogle Scholar
  10. Chim, S. S. C., Kino, G. S. 1991. “Optical Metrology for Integrated Circuit Fabrication.” SPIE Proceedings Vol. 1464.Google Scholar
  11. Coleman, D. J., Larson, P. J., and Lopata, A. D. 1988. “On the Accuracy of Overlay Measurements: Tool and Mark Asymmetry Effects.” SPIE Proceedings Vol. 921.Google Scholar
  12. Corle, T. R. and Kino, G. S. 1988. “Phase Imaging in Scanning Optical Microscopes,” presented at the International Congress on Optical Science and Engineering, Congress Centrium Hamburg, Hamburg, Federal Republic of Germany.Google Scholar
  13. Corle, T. R., Chou, C. H., and Kino, G. S. 1986. “Depth Response of Confocal Optical Microscopes.” Opt. Leu. Vol. 11, pp. 770–772.CrossRefGoogle Scholar
  14. Davidson, M., Kaufman, K., Mazor, I., and Cohen, F. 1987. “An Application of Interference Microscopy to Integrated Circuit Inspection and Metrology.” SPIE Proceedings Vol. 775.Google Scholar
  15. Davidson, M., Kaufman, K., and Mazor, I. 1988. “First Results of a Product Utilizing Coherence Probe Imaging for Wafer Inspection,” SPIE Proceedings Vol. 921.Google Scholar
  16. Davidson, M. P., Monohan, K. M., and Monte-verde, R. J. 1991. “Linearity of Coherence Probe Metrology: Simulation and Experiment.” SPIE Proceedings Vol. 1464.Google Scholar
  17. Dockrey, J. W. and Hendriks, D. 1989. “The Application of Coherence Probe Microscopy for Submicron Critical Dimension Linewidth Measurement.” SPIE Proceedings Vol. 1087.Google Scholar
  18. Dralla, J. R. et al. 1987. SPIE Proceedings Vol. 775, p. 218.CrossRefGoogle Scholar
  19. Eastman, J. M. and Zavislan, J. M. 1983. SPIE Proceedings Vol. 429, p. 56.CrossRefGoogle Scholar
  20. Fusek, R. L. et al. 1985. Optical Engineering Vol. 24, p. 731.CrossRefGoogle Scholar
  21. Groves, T. R. Nov-Dec. 1991 (in press), “Statistics of Pattern Placement Errors in Lithography.” J. Vacuum Science and Technology B Vol. 9(6), pp. 3555–3561.CrossRefGoogle Scholar
  22. Hartley, J. G., Groves, T. R., and Pfeiffer, H. C. Nov-Dec. 1991 (in press), “Performance of the EL-3I Maskmaker.” J. Vacuum Science and Technology B Vol. 9, pp. 3015–3018.CrossRefGoogle Scholar
  23. Hasan, T. F. and Perloff, D. S. 1985. Automated Electrical Measurement Techniques to Control VLSI Linewidth, Resistivity, and Registration. Test and Measurement World Vol. 5, pp. 78–90.Google Scholar
  24. Joy, D. C. 1987. “A Model for Calculating Secondary and Backscattered Electron Yields.” J. Microsc. Vol. 147, No. 1, pp. 51–64.CrossRefGoogle Scholar
  25. Joy, D. C. 1986. “Image modelling for SEM-based metrology.” Proceedings EMSA/MAS (G. W. Bailey, ed.), San Francisco Press, pp. 650–651.Google Scholar
  26. Khoury, H. A., Wickramasinghe, H. K., Landstein, L., Hobbs, C. D., Clabes, J., and O’Boyle, M. 1988–1990. “Combined Scanning Force Microprobe and Optical Microscope Metrology Tool.” IBM.Google Scholar
  27. Kino, G. S. and Cole, T. R. April 1989. “Scanning Optical Microscopy.” submitted to Physics Today. Google Scholar
  28. Kudva, S. and Ellington, T. to be published 1991. “Sematech White Paper on Metrology.”Google Scholar
  29. LaComb, J. T., Corle, T. R., and Sevike. 1990. “Three Dimensional Image Visualizations using the Real-Time Combined Scanning Optical Microscope.” SPIE Proceedings. Google Scholar
  30. Lawson, P. J. and Price, G. G. 1983. “Calibration Algorithms for an Electron Beam Metrology System.” Microelectronic Engineering I, p. 41.Google Scholar
  31. Lee, K. and Clabes, J. 1989. “Nanometer Scale Probe for an Atomic Force Microscope and Method for making same.” IBM. Google Scholar
  32. Leica-Leitz Inc., 24 Link Drive, Rockleigh, NJ 05647.Google Scholar
  33. Leitz-Heidelberg Instruments, the Leitz-Heidelberg Instrument CLSM.Google Scholar
  34. Levine, M., Corle, T. R., Mumaw, R. T., Chou, C. W., and Kino, G. S. 1990. “Multi-Level CD/ Overlay Metrology using a Real-Time Confocal Optical Microscope.” Microelectronics Engineering, pp. 669–676, Elsevier Science.Google Scholar
  35. Martin, Y., Williams, C. C., and Wickramasinghe, H. K. 1987. “Atomic Force Microscope-Force Mapping and Profiling on a sub 100 Angstrom Scale.” Journal of Applied Physics 61, pp. 4723–4729.CrossRefGoogle Scholar
  36. Matsuoka, G., et al. 1987. “Precision Linewidth Measurement Using the Electron Beam Metrology System.” Microelectronic Engineering Vol. 6, p. 645.CrossRefGoogle Scholar
  37. Nagaswami, V. and Geerts, W. 1989. “Overlay Control in Submicron Environment.” KTI Proceedings. Google Scholar
  38. Nikon Precision Inc., 1399 Shoreway Road, Belmont, CA 94002–4107.Google Scholar
  39. Nyyssonen, D. 1982. “Theory of Optical Edge Detection and Imaging of Thick Layers.” Journal of Optical Soc. Am. 72, pp. 1425–1436.CrossRefGoogle Scholar
  40. Nyyssonen, D. and Larrabee, R. D. 1987. “Sub-micrometer Linewidth Metrology in the Optical Microscope.” Journal of Research of the National Bureau of Standards Vol. 92, pp. 187–203.CrossRefGoogle Scholar
  41. Nyyssonen, D. 1977. “Linewidth Measurement with an Optical Microscope: The Effect of Operating Conditions on the Image Profile.” Applied Optics Vol. 16, pp. 2223–2230.CrossRefGoogle Scholar
  42. Nyyssonen, D. and Kirk, C. P. 1985. “Modeling the Optical Microscope Images of Thick Layers for the Purpose of Linewidth Measurement.” Proceedings SPIE Vol. 538, pp. 179–187.CrossRefGoogle Scholar
  43. Nyyssonen, D., Landstein, L., and Combs, E. 1991. “2D AFM Trench Metrology System.” EIPB Conference.Google Scholar
  44. Petran, M., Hadrovsky, M., and Boyde, A. 1985. “The Tandem Scanning Reflected Light Microscope.” Scanning 7, pp. 97–108.CrossRefGoogle Scholar
  45. Pfeiffer, H. C. and Groves, T. R. 1991. “Progress in E-beam Maskmaking for Optical and X-ray Lithography.” Microelectronic Engineering, Elsevier Science Publishers B. V., Amsterdam, pp. 141–149.Google Scholar
  46. Postek, M. T. and Joy, D. C. 1987. “Submicrometer Microelectronics Dimensional Metrology: Scanning Electron Microscopy.” Journal of Research National Bureau of Standards 92, 187–204.CrossRefGoogle Scholar
  47. Postek, M. T., and Larrabee, R. D., (in press, 1991), “Metrology of Fine Lines.” Advances in Materials Science and Engineering. Google Scholar
  48. Postek, M. T. and Joy, D. C. 1986. “Microelectronics Dimensional Metrology in the Scanning Electron Microscope, Part I.” Solid State Technology, p. 145.Google Scholar
  49. Postek, M. T. and Joy, D. C. 1986. “Microelectronics Dimensional Metrology in the Scanning Electron Microscope, Part II.” Solid State Technology, p. 77.Google Scholar
  50. Postek, M. T. and Larrabee, R. D. (in press, 1991). “Metrology of Fine Lines.” Advances in Materials Science and Engineering, p. 1991.Google Scholar
  51. Postek, M. T. 1987. “Low Accelerating Voltage Pitch Standard Based on the Modification of NBS SRM 484.” NBS Publication #NBSIR 87–3665. Google Scholar
  52. Prometrix Corporation Lithography Brochure Insert #01, “The Electrical Measurement Technique.”Google Scholar
  53. Ramakrishna, V. and Harrigan, J. E. 1989. “Defect Learning Requirements.” Solid State Technology, p. 103.Google Scholar
  54. Robb, F. 1987. “In-Process Linewidth Measurement of Polysilicon Gates Using a Scanning Electron Microscope.” SPIE Integrated Circuit Metrology, Inspection, and Process Control Vol. 775, p. 94.Google Scholar
  55. Rosenfield, M. G. 1988. “Measurement Techniques for Submicron Resist Images.” J. Vac. Sci. Technol. Vol. B6, No. 6.Google Scholar
  56. Rugar, D. and Hansma, P. October 1990. “Atomic Force Microscopy.” Physics Today, pp. 23–30.Google Scholar
  57. See, C. W., Iravani, M. V., and Wickramasinghe, H. K. 1985. “Scanning Differential Phase Contrast Optical Microscope Application to Surface Studies.” Appl. Opt. 24, p. 2373.CrossRefGoogle Scholar
  58. Seiler, D. G. and Sulway, D. V. 1984. “Precision Linewidth Measurement Using a Scanning Electron Microscope.” SPIE Integrated Circuit Metrology II, Vol. 480, p. 86.CrossRefGoogle Scholar
  59. Shaw, J. C., Rishton, S. A., Jackson, R. R., and O’Boyle, M. P. 1991. “Latent Image Measurements in Electron Beam Exposed Polymethylmethacrylate.” Applied Physics Letters Vol. 58, No. 3, pp. 310–316.CrossRefGoogle Scholar
  60. Singh, B. and Arnold, W. H. 1988. “Linewidth Measurement by Low Voltage SEM.” SPIE Integrated Circuit Metrology, Inspection, and Process Control II Vol. 901.Google Scholar
  61. Stalnaker, S. and Jackson, R. A. 1990. “Automated Misregistration Metrology for Advanced Devices Manufacturing.” KTI Microlithography Seminar Proceedings . Google Scholar
  62. Steel, W. 1983. Interferometry. Second Edition, Cambridge University Press, Cambridge.Google Scholar
  63. Teague, E. C. and Evans, C. 1989. “Patterns for Precision Instrument Design (Mechanical Aspects).” National Institute for Standards Technology, Precision Engineering Division, Gaithersburg, MD 20899, pp. 30–32.Google Scholar
  64. Utterback, S. G. 1987. Dimensional metrology using the scanning electron microscope. Review of NDE, pp. 1–11.Google Scholar
  65. Vukobratovich, D. 1986. “Introduction to Opto-mechanical Design.” Optical Sciences Center, University of Arizona, Tucson, AZ 85721, p. 91.Google Scholar
  66. Wallace, R. and Dickerson, G. 1989. Proceedings of SPIE Vol. 1087.Google Scholar
  67. Wells, O. C. 1974. Scanning Electron Microscopy, New York: McGraw-Hill.Google Scholar
  68. Wickramasinghe, H. K. Dec. 1985. “Differential Laser Heterodyne Micrometrology.” Optical Engineering Vol. 24, No. 6.CrossRefGoogle Scholar
  69. Wickramasinghe, H. K. Oct. 1989. “Scanned-Probe Microscopes.” Scientific American Vol. 260, No. 10.Google Scholar
  70. Wilson, T. and Sheppard, C. J. R. 1984. Theory and Practice of Scanning Optical Microscopy. Academic Press.Google Scholar
  71. Wu, N. G. 1980. “Automated Wafer Production.” ISSCC Digest of Technical Papers, p. 708.Google Scholar
  72. Xiao, G. Q., Corle, T. R., and Kino, G. S. 1988. “Real-Time Confocal Scanning Optical Microscope.” Appl. Phys. Lett. Vol. 53, No. 8, pp. 716–718.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Henri A. Khoury
    • 1
  • Timothy R. Groves
    • 1
  • Christian H. Plougonven
    • 2
  1. 1.IBM CorporationEast FishkillUSA
  2. 2.Corbeil-EssonnesFrance

Personalised recommendations