Modeling for Manufacturing Diagnostics

  • Ajay Sharma


An essential and important component in diagnosis is an analysis of the system. In this analysis, one attempts to relate the observed (desirable and undesirable) results to input parameters or conditions. This process is most efficient if a model of the system is used, together with well designed experiments. As it is used in many different contexts with different meanings, we define the term model to mean: an executable implementation of theoretical and empirical knowledge in this chapter. The appropriateness of the theory behind the model determines its usefulness in diagnosis. Good models are essential in proposing failure mechanisms, in design of good diagnostic experiments, and in interpreting the results of experiments. Based on this interpretation, one might reach a conclusion, appropriately modify the theory and iterate, or conduct more experiments to confirm results. On the other hand, without an appropriate theory, one is reduced to “educated” guesswork in these aspects of diagnostics.


Boundary Element Method Strain Energy Density Plasma Etching Oxide Growth Fluid Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, W. F. 1977. Numerical Methods for Partial Differential Equations, 2nd ed. New York: Academic Press.MATHGoogle Scholar
  2. Baron, J. R. 1962. ARS J. Vol. 32, p. 1053.MATHGoogle Scholar
  3. Bird, R. B., Stewart, W. E., and Lightfoot, E. N. 1960. Transport Phenomena. New York: John Wiley & Sons, Inc.Google Scholar
  4. Boroucki, L., Hansen, H. H., and Varahramyan, K. May 1985. FEDSS—a 2D semiconductor fabrication process simulator. IBM J. of Res. and Dev. Vol. 29, No. 3, pp. 218–276.CrossRefGoogle Scholar
  5. Buturla, E. M., Cottrell, P. E., Grossman, B. M., and Salsburg, K. A. July 1981. Finite-element analysis of semiconductor devices: The FIELDAY program. IBM Journal of Research and Development Vol. 25, No. 4, pp. 218–231.CrossRefGoogle Scholar
  6. Buturla, E. M., Cole, D. C., and Furkay, S. S., et al. 1990. The use of simulation in semiconductor technology development. Solid-State Elec. Vol. 33, No. 6, pp. 591–623.CrossRefGoogle Scholar
  7. Carslaw, H. S. and Jaeger, J. C. 1959. Conduction of Heat in Solids. Oxford: Oxford University Press.Google Scholar
  8. Chapman, S. and Cowling, T. G. 1961. The Mathematical Theory of Non-Uniform Gases. London: Cambridge University Press.Google Scholar
  9. Chapman, A. J. 1974. Heat Transfer. New York: Macmillan.Google Scholar
  10. Cheng, D. Y., Hwang, C. G., and Dutton, R. W. 1988. PISCES-MC: a multiwindow, multi-method 2-D device simulator. IEEE Transactions Comput Aided Des Integr Circuits Syst. Vol. 7, No. 9, pp. 1017–1026.CrossRefGoogle Scholar
  11. Chin, G., Dietrich, W. Jr., Boning, D., Wong, A., Neureuther, A., and Dutton, R. June 1991. “Linking TCAD to EDA—benefits and issues.” In Proceedings of the 28th ACM/IEEE Design Automation Conference. creare.x Incorporated, Etna Road, P.O. Box 71, Hanover, NH 03755. Fluent User’s Manual. Google Scholar
  12. Dalvie, M. and Jensen, K. F. 1990. Combined experimental and modeling study of spatial effects in plasma etching. J. of the Electrochemical Soc. Vol. 137, No. 4, pp. 1062–1078.CrossRefGoogle Scholar
  13. Dalvie, M., Farouki, R. T., and Hamaguchi, S. 1991. Flux considerations in the coupling of monte carlo plasma sheath simulations with feature evolution models. IEEE Trans. on Electron Devices. Google Scholar
  14. Deal, B. E. and Grove, A. S. 1965. General relationships for the thermal oxidation of silicon. J. of Applied Physics Vol. 36, No. 12, p. 3770.CrossRefGoogle Scholar
  15. Dongarra, J. J. and Grosse, E. May 1987. Distribution of Mathematical Software Via Electronic Mail. Communications of the ACM Vol. 30, No. 5, pp. 403–407.CrossRefGoogle Scholar
  16. Ghez, R. 1988. A Primer of Diffusion Problems. New York: John Wiley.CrossRefGoogle Scholar
  17. Greenberg, M. D. 1978. Foundations of Applied Mathematics. Englewood Cliffs, N.J.: Prentice-Hall.MATHGoogle Scholar
  18. Harrison, D. S., Newton, A. R., Spickelmier, R. L., and Barnes, T. J. Feb. 1990. Electronic CAD frameworks. Proceedings of the IEEE Vol. 78, No. 2.Google Scholar
  19. Hill, J. M. and Dewynne, J. N. 1987. Heat Conduction. Blackwell Scientific Publications, Oxford, OX2 OEL.MATHGoogle Scholar
  20. Hsieh, J. J. and Anderson, T. J. 1987. An investigation of the reaction of hcl with ga and in. J. of Crystal Growth Vol. 83, p. 268.CrossRefGoogle Scholar
  21. Hsieh, J. J. and Joshi, R. V. Oct. 1991. Modelling of Mass Depletion Effect on High Rate W-CVD Process. Proceedings of Advanced Metallization for VLSI Applications, pp. 77–85.Google Scholar
  22. Hsieh, J. J. 1991. Theory and modeling of micro-feature scale molecular transport and deposition profile evolution in low pressure CVD processes. J. of Vacuum Science and Tech. Google Scholar
  23. Jensen, K. F. Nov. 1989. Modeling of energy and mass transport in laser-assisted cvd. J. of Crystal Growth (Netherlands) Vol. 98, pp. 148–166.CrossRefGoogle Scholar
  24. Jones, F. and Logan, J. S. Sept. 1990. A simple finite element model for reactive sputter-deposition systems. IBM J. of Res. and Dev. Vol. 34, No. 5, pp. 680–692.CrossRefGoogle Scholar
  25. Jones, F. 1992. Private communication.Google Scholar
  26. Lieber, D., Karasick, M., Nackman, L., and Tang, J.-M. Mar. 1992. FOXI, a parameterized model builder and mesh generator. IBM Research Report RC xxxx. Google Scholar
  27. Kao, D.-B., McVittie, J. P., and Nix, W. D. 1988. Two-dimensional thermal oxidation of silicon—II: Modeling stress effects in wet oxides. IEEE Trans. on Electron Devices Vol. 35, No. 1, pp. 25–37.CrossRefGoogle Scholar
  28. Koppelman, G. M. and Wesley, M. A. Mar. 1983. OYSTER: A study of integrated circuits as three-dimensional structures. IBM J. of Research and Development Vol. 27, pp. 149–163.CrossRefGoogle Scholar
  29. McLennan, M. J. 1991. TCAD demonstrates proposed standards. The Initiative, CAD Framework Initiative, Inc., Fall.Google Scholar
  30. McVittie, J. P., Ignacio, J., Ulacia, F., and Petti, C. J. 1988. Crystal-orientation dependent etch rates and a trench model for dry etching. J. of the Electrochemical Soc. Vol. 135, No. 6, pp. 1521–1525.CrossRefGoogle Scholar
  31. Murthy, C. S. and Srinivasan, G. R. 1991. Monte carlo studies of ion implantation in crystalline silicon. Proceedings—The Electrochemical Soc. Vol. 91, No. 4, pp. 43–64.Google Scholar
  32. Oktay, S. and Kammerer, H. C. 1982. A conduction-cooled module for high-performance LSI devices. IBM J. of Research and Dev. Vol. 26, No. 1, pp. 55–66.CrossRefGoogle Scholar
  33. Pao, R. H. F. 1967. Fluid Dynamics. Columbus, Ohio: Charles E. Merrill Books.Google Scholar
  34. Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere.MATHGoogle Scholar
  35. Plummer, J. D. 1990. Process and device modeling. Microelectronics J. Vol. 21, No. 2, pp. 7–20.CrossRefGoogle Scholar
  36. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. 1988. Numerical Recipes in C. London: Cambridge University Press.MATHGoogle Scholar
  37. Rafferty, C. S., Boroucki, L., and Dutton, R. W. 1989. Applied Physics Letters Vol. 54, p. 1516.CrossRefGoogle Scholar
  38. Richtmyer, R. D. and Morton, K. W. 1967. Difference Methods for Initial-Value Problems, 2nd ed. New York: Interscience.Google Scholar
  39. Rorris, E., O’Brien, R. R., Morehead, F. F., Lever, R. F., Peng, J. P., and Srinivasan, G. R. 1991. FINDPRO. a simulator for the coupled point defects and impurity diffusion. Proceedings—The Electrochemical Soc. Vol. 91, No. 4, pp. 703–721.Google Scholar
  40. Ryan, K. R. and Plumb, I. C. 1986. A model for the etching of Si in CF4 plasmas: Comparison with experimental measurements. Plasma Chemistry and Plasma Proc. Vol. 6, No. 3, pp. 231–246.CrossRefGoogle Scholar
  41. Sawin, H. H. and Gogolides, E. 1991. Continuum modeling of plasma processes. Proceedings—The Electrochemical Society Vol. 91, No. 4, pp. 603–613.Google Scholar
  42. Shames, I. 1982. Mechanics of Fluids. New York: McGraw-Hill.Google Scholar
  43. Sharma, A. 1986. “Statistical thermal modeling of multi-chip modules.” In Proc. Elec. Components Conf. Google Scholar
  44. Spence, C. A., Ferguson, R. A., and Neureuther, A. R. 1990. Characterization and modeling of materials for photolithographic simulation. Solid State Elec. Vol. 33, No. 6, pp. 625–638.CrossRefGoogle Scholar
  45. Steinfeld, J. I., Francisco, J. S., and Hase, W. L. 1989. Chemical Kinetics and Dynamics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  46. Stuffier, S. R. and Cifuentes, A. O. Feb. 1992. The effect of trench corner shapes on local stress fields: A 3-D finite element modelling study. IBM Research Report RC xxx.u. Google Scholar
  47. Strang, G. and Fix, G. J. 1973. An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  48. Welty, J. R., Wicks, C. E., and Wilson, R. E. 1984. Fundamentals of Momentum Heat and Mass Transfer. New York: John Wiley.Google Scholar
  49. Wu, H. C., Wong, A. S., Koh, Y. L., Scheckler, E. W., and Neureuther, A. R. Dec. 1988. Simulated Profiles from the Layout—Design Interface in X (SIMPL-DIX). IEDM Technical Digest, pp. 328–331.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ajay Sharma
    • 1
  1. 1.IBM Research DivisionYorktown HeightsUSA

Personalised recommendations