Emax and Myocardial Microcirculation

  • Fumihiko Kajiya
  • Toyotaka Yada
  • Yasuo Ogasawara
  • Shigeru Ohta
  • Osamu Hiramatsu
  • Masami Goto
  • Katsuhiko Tsujioka
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 177)


Cardiac contraction is one of the major determinants of instantaneous coronary blood flow. In 1695, Scaramucci first speculated that cardiac contraction squeezed myocardial vessels and caused the pulsation of coronary arterial blood flow (1). This hypothesis was later confirmed using newly-developed measuring tools that were applicable to the coronary blood flow of a beating heart (2,3,4). Modern ultrasound and laser technology enabled us to investigate the phasic pattern of the coronary inflow to the myocardium at the peripheral portion of the artery or in the septal artery (5,6); thus, the effects of cardiac contraction on myocardial perfusion can be evaluated without the influence of the compliance of extramural coronary arteries.


Left Ventricular Pressure Diameter Change Cardiac Contraction Grin Lens Venular Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scaramucci J. Theoremate familiaria viros eruditos consulentia de varus physico-medicis lucubratiionibus juxta leges mecanicas. Apud Joannem Baptistam Bustum 1695:70–81.Google Scholar
  2. 2.
    Gregg D.E. The coronary circulation in health and disease. Lea & Febiger, Philadelphia, 1950.Google Scholar
  3. 3.
    Marcus ML. The coronary circulation in health and disease. McGraw-Hill, 1983.Google Scholar
  4. 4.
    Kajiya F., Klassen G.A., Spaan J.A.E., Hoffman J.I.E. Coronary circulation: basic mechanism and clinical relevance. Springer-Verlag, Tokyo, 1990.CrossRefGoogle Scholar
  5. 5.
    Chilian W. and Marcus E.S. Phasic coronary flow by a vascular waterfall mechanism. Circ Res 50:775–781, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Kajiya F., Tomonaga G., Tsujioka K., Ogasawara Y., Nishihara H. Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method. J Biomech Eng 107:10–15, 1985.PubMedCrossRefGoogle Scholar
  7. 7.
    Kajiya F., Goto M., Yada T., Kimura A., Yamamoto T., Hiramatsu O., Ogasawara Y., Tsujioka K., Yamamori S., Hosaka H. In vivo evaluation of endocardial blood vessels by a new needle type CCD microscope (abstract). Circulation 84:II-271, 1991.Google Scholar
  8. 8.
    Yada T., Hiramatsu O., Kimura A., Goto M., Ogasawara Y., Tsujioka K., Yamamori S., Ohno K., Hosaka H., Kajiya F. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe video-microscope with a CCD camera. Circ Res 72:939–946, 1993.PubMedCrossRefGoogle Scholar
  9. 9.
    Ohta S., Okamoto T., Ogasawara Y., Matsumoto T., Kajiya F. Simulation study of intramyocardial blood flow dynamics (in Japanese). Trans IECE Jap J77-D-II:441–448, 1994.Google Scholar
  10. 10.
    Bruinsma P., Arts T., Dankelman J., Spaan J.A.E. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance. Basic Res Cardiol 83:510–52, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Spaan J.A.E., Breuls N.P.W., Laird J.D. Diastolic-systolic flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49:584–593, 1981.PubMedCrossRefGoogle Scholar
  12. 12.
    Spaan J.A.E. Coronary blood flow. Kluwer Academic Pub, Dordrecht, 1991.CrossRefGoogle Scholar
  13. 13.
    Krama R., Sipkema P., Westerhof N. Can coronary systolic-diastolic flow difference be predicted by left ventricular pressure or time varying intramyocardial elastance? Basic Res Cardiol 84:149–159, 1989.CrossRefGoogle Scholar
  14. 14.
    Suga H., Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res 35:117–126, 1974.PubMedCrossRefGoogle Scholar
  15. 15.
    Hiramatsu O., Goto M., Yada T., Kimura A., Tachibana H., Ogasawara Y., Tsujioka K., Kajiya F. Diameters of subendocardial aterioles and venules during prolonged diastoles in canine left ventricles. Circ Res (in press).Google Scholar
  16. 16.
    Kanatsuka H., Lamping K.G., Eastham C.L., Dellsperger K.C., Marcus M.L. Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circ Res 65:1296–1305, 1989.PubMedCrossRefGoogle Scholar
  17. 17.
    Nellis H.N., Whitesell L. Phasic pressures and diameters in small epicardial veins of the unrestrained heart. Am J Physiol 257:H1056–H1061, 1989.PubMedGoogle Scholar
  18. 18.
    Goto M., Flynn A.E., Doucette J.W., Jansen C.M.A., Stork M.M., Coggins D.L., Muehrcke D.D., Husseini W.K., Hoffman J.I.E. Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol 261:H1417–H1429, 1991.PubMedGoogle Scholar
  19. 19.
    Judd R.M., Levy B.I. Effects of barium-induced cardiac contraction on large and small-vessel intramyocardial blood volume. Circ Res 68:217–225, 1991.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Fumihiko Kajiya
  • Toyotaka Yada
  • Yasuo Ogasawara
  • Shigeru Ohta
  • Osamu Hiramatsu
  • Masami Goto
  • Katsuhiko Tsujioka

There are no affiliations available

Personalised recommendations