Skip to main content

Inositol lipid-mediated signalling in response to endothelin and ATP in the mammalian testis

  • Chapter
Signal Transduction Mechanisms

Abstract

The testis is a complex organ in which local control is achieved by signalling between its constituent cells. Herein we describe the responses of cultured rat testicular cells and a mouse Sertoli cell-line to stimulation by endothelin and ATP, and elsewhere we have shown that rat peritubular myoid cells possess phosphoinositidase C-coupled Vla-vasopressin receptors identical to those of liver (Howl, J. et al, 1995, Endocrinology 136: 2206–2213). 1. Peritubular myoid cells from pre-pubertal rats responded through ETA receptors with PtdIns(4,5)P 2 hydrolysis [EC50 for endothelin-1 (ET-1) ~ 0.4 nM], elevation of intracellular [Ca2+], and tyrosine phosphorylation of a variety of cellular proteins. They also showed enhanced adenylate cyclase activity, with an EC50 for ET-1 of ~ 3 nM, also through ETA receptors. Pharmacological elevation of [cAMP] did not immediately change the ET-1-stimulated formation of inositol phosphates, but attenuated the response after several hours. 2. Pre-pubertal rat Sertoli cells showed no detectable responses to ET-1, but responded to FSH with elevated [cAMP] and to ATP with PtdIns(4,5)P 2 hydrolysis. PtdIns(4,5)P 2 hydrolysis was equally responsive to ATP and UTP, and so appears to be activated by P2U-purinergic receptors. This response was enhanced by protein kinase C inhibition and attenuated by PKC activation. 3. Despite its lack of effect on rat Sertoli cells in primary culture, ET-1 provoked PtdIns(4,5)P 2 hydrolysis in the TM4 murine Sertoli cell line (EC50 ~ 0.6 nM), and this response was negatively regulated by protein kinase C activation. 5. No receptorstimulated activation of phosphoinositase C was detected in ‘germ cell’ populations, but the non-specific G protein activator A1F4 provoked inositol phosphate accumulation in these cells, so demonstrating their potential to respond through yet to be identified G protein-coupled receptors with phosphoinositidase C activation. 6. Immunoblotting studies showed the presence in rat testis of phosphoinositidase C-βl and the a-subunits(s) of the G-protein(s) Gq and/or G11. These studies show that testicular myoid and Sertoli cells use at least three G protein-coupled receptors (Vla-vasopressins, ETA-endothelin and P2U-purinergic) to signal through phosphoinositidase C activation, that ET-1 can activate multiple signalling pathways in myoid cells, and that the ET-1-stimulated phosphoinositidase C responses of myoid and Sertoli cells have different regulatory characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

PtdIns(4,5)P 2 :

phosphatidylinositol 4,5-bisphosphate

Ins, Insp, InsP 2, InsP 3, InsP 4, InsP 5, InsP 6 (and equivalent abbreviations with added locants):

myoinositol and myoinositol phosphates numbered by reference to D-myoinositol 1 - phosphate as InslP (see Biochemical Journal (1989) 258, 1-2]

ET-1:

endothelin-1

ET-3:

endothelin-3; PKC - protein kinase C

PDB:

phorbol 12,13-dibutyrate

IBMX:

isobutylmethylxanthine

References

  1. Robinson R, Fritz IB: Myoinositol biosynthesis by Sertoli cells, and levels of myoinositol biosynthesis enzymes in testis and epididymis. Can J Biochem 57: 962–967, 1979

    Article  PubMed  CAS  Google Scholar 

  2. Brooks DE: Acid-soluble phosphorus compounds in mammalian sperm. Biochem J 118: 851–857, 1970

    PubMed  CAS  Google Scholar 

  3. Hodgkin M, Parry JB, Micheli RK, Kirk CJ: Dephosphorylation of D-myo-inositol-1,4,5-trisphosphate in testes. Biochem Soc Trans, 19: 105S, 1991

    PubMed  CAS  Google Scholar 

  4. Hodgkin M, Craxton A, Parry JB, Hughes PJ, Potter BVL, Micheli RH, Kirk CJ: Bovine testis and human erythrocytes contain different subtypes of membrane-associated Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphomonoesterase. Biochem J 297: 637–645,1994

    PubMed  CAS  Google Scholar 

  5. Hughes PJ, Kirk CJ, Micheli RH: Inhibition of porcine brain inositol 1,3,4-trisphosphate 5/6-kinase by inositol polyphosphates, other polyol phosphates, polyanions and polycations. Biochim Biophys Acta 1223: 57–70, 1994

    Article  PubMed  CAS  Google Scholar 

  6. Dufau ML: Endocrine regulation and communicating functions of the Leydig cell. Ann Rev Physiol 50: 483–508, 1988

    Article  CAS  Google Scholar 

  7. Kierszenbaum AL: Mammalian spermatogenesis in vivo and in vitro: a partnership of spermatogenic and somatic cell lineages. Endocrine Rev 15: 116–134, 1994

    CAS  Google Scholar 

  8. Jegou, B: The Sertoli cell. Baillieres Clinical Endocrinology and Metabolism: The Testes, De Krester (ed.). Bailliere Tindel (London), 6: 273–311, 1992

    Google Scholar 

  9. Saez JM, Lejeune AH, Chatelain PG: Cell-cell communication in the testis. Horm Res 36: 104–115, 1991

    Article  PubMed  CAS  Google Scholar 

  10. Skinner MK: Cell-cell interactions in the testis. Endocrine Rev 12: 45–77, 1991

    Article  CAS  Google Scholar 

  11. Verhoeven G: Local control systems within the testis. Baillieres Clinical Endocrinology and Metabolism: The Testes, De Krester (ed.), Bailliere Tindel (London), 6: 313–333, 1992

    Google Scholar 

  12. Ackland JF, Schwartz NB, Mayo KE, Dodson RE: Non-steroidal signals originating in the gonads. Physiol Rev 72: 731–785, 1992

    PubMed  CAS  Google Scholar 

  13. Leung PCK, Steele GL: Intracellular signalling in the gonads. Endocrine Rev 13: 476–498, 1992

    CAS  Google Scholar 

  14. Cooke BA: Is cAMP an obligatory second messenger for luteinizing hormone? Mol Cell Endocrinol 69: C11–C15, 1990

    Article  PubMed  CAS  Google Scholar 

  15. Howl J, Rudge SA, Lavis R, Davis ARL, Parslow RA, Hughes PJ, Kirk CJ, Micheli, RH, Wheatley M: Vasopressin receptors of rat testicular myoid cells: receptor structure, signal transduction and developmental regulation. Endocrinology 136: 2206–2213, 1995

    Article  PubMed  CAS  Google Scholar 

  16. Rudge SA, Hughes PJ, Kirk CJ, Micheli RH: Endothelin-1 stimulates inositol phosphate production in rat testis. Biochem Soc Trans 21: 364S, 1993

    PubMed  CAS  Google Scholar 

  17. Tung PS, Fritz IB: Isolation and culture of testicular cells: a morphological characterisation. In: E.S.E. Hafez (ed.). Techniques of Human Andrology. Elsevier/North Holland Biomedical Press (Amsterdam), 125–143, 1977

    Google Scholar 

  18. Tung PS, Fritz IB: Characterisation of rat testicular peritubular myoid cells in culture: α-smooth muscle isoactin is a specific differentiation marker. Biol Reprod 42: 351–365, 1990

    Article  PubMed  CAS  Google Scholar 

  19. Mather JP, Attie KM, Woodruff TK, Rice GC, Phillips DM: Activin stimulates spermatogonial proliferation in germ-Sertoli cell co-cultures from immature rat testis. Endocrinology 127: 3206–3214, 1990

    Article  PubMed  CAS  Google Scholar 

  20. Kirk CJ, Morris AJ, Shears SB: Inositol phosphate second messengers. In: K. Siddle, J.C. Hutton (eds). Peptide Hormone Action: a Practical Approach. IRL Press, (Oxford University Press), pp 151–184, 1990

    Google Scholar 

  21. Whal M, Luchenni MT, Gruenstein E: Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium, 11: 487–500, 1990

    Article  Google Scholar 

  22. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y: Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262: 5592–5595, 1987

    PubMed  CAS  Google Scholar 

  23. Davis PD, Hill CH, Keech E, Lawton G, Nixon JS, Sedgwick AD, Wadworth J, Westmacott D, Wilkinson SE: Potent selective inhibitors of protein kinase C. FEBS Lett 259: 61–63, 1989

    Article  PubMed  CAS  Google Scholar 

  24. Orth JM: Proliferation of Sertoli cells in foetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 203: 485–192, 1982

    Article  PubMed  CAS  Google Scholar 

  25. Mather JP, Zhuang LZ, Perez-Infante V, Phillips DM: Culture of testicular cells in hormone-supplemented serum-free media. Ann NY Acad Sci 383: 44–68, 1984

    Article  Google Scholar 

  26. Griswold MD, Solari A, Tung PS, Fritz IB: Stimulation by follicle-stimulating hormone of DNA synthesis and of mitosis in cultured Sertoli cells prepared from testes of immature rats. Mol Cell Endocrinol 7: 151–165, 1977

    Article  PubMed  CAS  Google Scholar 

  27. Tres LL, Kierszenbaum AL: Viability of rat spermatogenic cells in vitro is facilitated by their co-culture with Sertoli cells in serum-free hormone-supplemented medium. Proc Natl Acad Sci USA 80: 3377–3381, 1983

    Article  PubMed  CAS  Google Scholar 

  28. Le Magueresse-Battistoni B, Gerad N, Jegou B: Pachytene spermatocytes can achieve meiotic process in vitro. Biochem Biophys Res Commun 179: 1115–1121, 1991

    Article  PubMed  Google Scholar 

  29. Steinberger A, Heindel JJ, Lindsey JN, Elkington JSH, Sanborn BM, Steinberger E: Isolation and culture of FSH responsive Sertoli cells. Endocr Res Commun 2: 261–272, 1975

    Article  PubMed  CAS  Google Scholar 

  30. Mitchell FM, Mullaney I, Godfrey PP, Arkinstall SJ, Wakelam MJO, Milligan G: Widespread distribution of GG11α detected immunologically by an antipeptide antiserum directed against the predicted C-terminal decapeptide. FEBS Lett 287: 171–174, 1991

    Article  PubMed  CAS  Google Scholar 

  31. Blank JL, Ross AH, Exton JH: Purification and characterisation of two G-proteins that activate the β1 isozyme of phosphoinositide-specific phospholipase C J Biol Chem 266: 18206–18216, 1991

    PubMed  CAS  Google Scholar 

  32. Skinner MK: Cell-cell interactions in the testes. Endocrine Rev 12: 45–77, 1991

    Article  CAS  Google Scholar 

  33. Quirk SM, Reichert LE Jr: Regulation of the phosphoinositide pathway in cultured Sertoli cells from immature rats: effects of follicle-stimulating hormone and fluoride. Endocrinology 123: 230–237, 1988

    Article  PubMed  CAS  Google Scholar 

  34. Monaco L, Adamo S, Conti M: Follicle-stimulating hormone modulation of phosphoinositide turnover in the immature rat Sertoli cell in culture. Endocrinology 123: 2032–2039, 1988

    Article  PubMed  CAS  Google Scholar 

  35. Gnessi L, Emidi A, Scarpa S, Palleschi S, Ragano-Caracciolo M, Silvestroni L, Modesti A, Spera G: Platelet-derived growth factor effects on purified testicular peritubular myoid cells: binding, cytosolic Ca2+ increase, mitogenic activity, and extracellular matrix production enhancement. Endocrinology 133: 1880–1888, 1993

    Article  PubMed  CAS  Google Scholar 

  36. Pickering BT, Birkett SD, Guldenaar SEF, Nicholson HD, Worley RTS, Yavachev L: Oxytocin in the testis: what, where and why? Ann Acad N Sci 564: 198–209, 1989

    Article  CAS  Google Scholar 

  37. Fantoni G, Morris PL, Forti G, Vannelli GB, Orlando C, Barni T, Sestini R, Danza G, Maggi M: Endothelin-1: a new autocrine/paracrine factor in rat testis. Am J Physiol 265: E267–E274, 1993

    PubMed  CAS  Google Scholar 

  38. Matsumoto H, Suzuki N, Onda H, Fujino M: Abundance of endothelin-3 in rat intestine, pituitary gland and brain. Biochem Biophys Res Commun 164: 74–80, 1989

    Article  PubMed  CAS  Google Scholar 

  39. Firth JD, Ratcliffe PJ: Organ distribution of the three rat endothelin messenger RNAs and the effects of ischemia on renal gene expression. J Clin Invest 90: 1023–1031, 1992

    Article  PubMed  CAS  Google Scholar 

  40. Conte D, Questino P, Fillo S, Nordio M, Isidori A, Romanelli F: Endothelin stimulates testosterone secretion by rat Leydig cells. J Endocrinol 136: R1–R4, 1993

    Article  PubMed  CAS  Google Scholar 

  41. Ergul A, Glassberg MK, Majerict MH, Puett, D: Endothelin-1 promotes steroidogenesis and stimulates proto-oncogene expression in transformed murine Leydig cells. Endocrinology 132: 598–603, 1993

    Article  PubMed  CAS  Google Scholar 

  42. Casey ML, Byrd W, MacDonald PC: Massive amounts of immunoreactive endothelin in human seminal fluid. J Clin Endocrinol Metab 74: 223–225, 1992

    Article  PubMed  CAS  Google Scholar 

  43. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T: The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 86: 2863–2867, 1989

    Article  PubMed  CAS  Google Scholar 

  44. Vane J: Endothelins come home to roost. Nature (London), 348: 673, 1990

    Article  CAS  Google Scholar 

  45. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S: Cloning and expression of a cDNA encoding an endothelin receptor. Nature (London), 348:730–732, 1990

    Article  CAS  Google Scholar 

  46. Cyr C, Huebner K, Druck T, Kris R: Cloning and chromosomal localisation of a human endothelin ETA receptor. Biochem Biophys Res Commun 181: 184–190, 1991

    Article  PubMed  CAS  Google Scholar 

  47. Hosoda K, Nakao K. Arai H, Suga, S, Ogawa Y, Masashi M, Shirakami G, Saito Y, Nakanishi S, Imura, H: Cloning and expression of human endothelin-1 receptor cDNA. FEBS Lett 287: 23–26, 1991

    Article  PubMed  CAS  Google Scholar 

  48. Lin HY, Kaji EH, Winkel GK, Ives HE, Lodish HF: Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor. Proc Natl Acad Sci USA 88: 3185–3189, 1991

    Article  PubMed  CAS  Google Scholar 

  49. Haendler B, Hechler U, Schleuning W-D: Molecular cloning of human endothelin (ET) receptors ETA and ETB. J Cardio Pharmacol Suppl 12: S1–S4, 1992

    Article  Google Scholar 

  50. Sakurai T, Yanagisawas M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T: Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature (London), 348: 732–735, 1990

    Article  CAS  Google Scholar 

  51. Nakamuta M, Takayanagi R, Sakai Y, Sakamoto S, Hagiwara H, Mizuno T, Saito Y, Hirose S, Yamamoto M, Nawata H: Cloning and sequence analysis of a cDNA encoding human non-selective type of endothelin receptor. Biochem Biophys Res Commun 177: 34–39, 1991

    Article  PubMed  CAS  Google Scholar 

  52. Schramek H, Wang Y, Konieczkowski M, Rose PM, Sedor JR, Dunn MJ: Endothelin-1 stimulates cytosolic phospholipase A2 in Chinese hamster ovary cells stably expressing the human ETA and ETB receptor subtype. Biochem Biophys Res Commun 199: 992–997, 1994

    Article  PubMed  CAS  Google Scholar 

  53. Aramori I, Nakanishi S: Coupling of two endothelin receptor subtypes to differing signal transduction systems in transfected Chinese hamster ovary cells. J Biol Chem 267: 12468–12474, 1992

    PubMed  CAS  Google Scholar 

  54. Setchell BP: Nerves of the testis and scrotum: In: The Mammalian Testis, Elek Books (London), 77–89, 1978

    Google Scholar 

  55. Filippini A, Tripiciano A, Palombi F, Teti A, Panicca R, Stefanini M, Ziparo: Rat testicular myoid cells respond to endothelin: characterisation of binding and signal transduction pathway. Endocrinology 133: 1789–1796, 1993

    Article  PubMed  CAS  Google Scholar 

  56. Cali JJ, Balcueva EA, Rybalkin I, Robishaw JD: Selective tissue distribution of protein y subunits, including a new form of γ subunit identified by cDNA cloning. J Biol Chem 267: 24023–24027, 1992

    PubMed  CAS  Google Scholar 

  57. Cirillo DM, Gaudino G, Naldini L, Comofio PM: Receptor for bombesin with associated tyrosine kinase activity. Mol Cell Biol 12: 4641–649, 1986

    Google Scholar 

  58. Kohno M, Pouyssegur J: A thrombin-induced tyrosine phosphorylation of 43,000-and 41,000-Mr proteins is independent of cytoplasmic alkalinization in quiescent fibroblasts. Biochem J 238: 451–57, 1986

    PubMed  CAS  Google Scholar 

  59. Ferrell JE Jr, Martin GS: Platelet tyrosine-specific protein phosphorylation is regulated by thrombin. Mol Cell Biol 8: 3603–3610, 1988

    PubMed  CAS  Google Scholar 

  60. Huckle WR, Prokop CA, Dy RC, Herman B, Earp S: Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 10: 6290–6298, 1990

    PubMed  CAS  Google Scholar 

  61. Force T, Kyriakis JM, Avruch J, Bonventre JV: Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and-independent pathways in glomerular mesangial cells. J Biol Chem 266: 6650–6656, 1991

    PubMed  CAS  Google Scholar 

  62. Tsuda T, Kawahara Y, Shii K, Koide M, Ishida Y, Yokoyama, M: Vasoconstrictor-induced protein-tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Lett 285: 44–48, 1991

    Article  PubMed  CAS  Google Scholar 

  63. Zachary I, Gil J, Lehmann W, Sinnett-Smith J, Rozengurt E: Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc Natl Acad Sci USA 88: 4577–4581, 1991

    Article  PubMed  CAS  Google Scholar 

  64. Zachary I, Sinnett-Smith J, Rozengurt E: Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells: identification of a novel tyrosine kinase as a major substrate. J Biol Chem 267: 19031–19034, 1992

    PubMed  CAS  Google Scholar 

  65. Koide M, Kawahara Y, Tsuda T, Ishida Y, Shii, Yokoyama M: Endothelin-1 stimulates tyrosine phosphorylation and the activities of two mitogen-activated protein kinases in cultured vascular smooth muscle cells. J Hypertens 10: 1173–1182, 1992

    Article  PubMed  CAS  Google Scholar 

  66. Granot Y, Van Putten V, Schrier RW: Vasopressin dependent tyrosine phosphorylation of a 38 kDa protein in human platelets. Biochem Biophys Res Commun 168: 566–573, 1990

    Article  PubMed  CAS  Google Scholar 

  67. Simonson MS, Herman WH: Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signalling by endothelin-1. J Biol Chem 268: 9347–9357, 1993

    PubMed  CAS  Google Scholar 

  68. Saville MK, Graham A, Malarkey K, Paterson A, Gould GW, Plevin, R: Regulation of endothelin-1-and Iysophosphatidic acid-stimulated tyrosine phosphorylation of focal adhesion kinase (PP125™) in rat-I fibroblasts. Biochem J 301: 407–414, 1994

    PubMed  CAS  Google Scholar 

  69. Wong PYD, Huang SJ: Secretory agonists stimulate a rise in intracellular cyclic AMP but not Ca2+ and inositol phosphates in cultured rat epididymal epithelium. Exp Physiol 75: 321–337, 1990

    PubMed  CAS  Google Scholar 

  70. Sharma OP, Flores JA, Leong DL, Veldhuis JD: Mechanisms by which endothelin-1 stimulates increased cytosolic free calcium ion concentrations in single rat Sertoli cells. Endocrinology 135: 127–134, 1994

    Article  PubMed  CAS  Google Scholar 

  71. Burnstock G, Kennedy C: Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmac 16: 433–440, 1985

    Article  CAS  Google Scholar 

  72. Brown HA, Lazarowski ER, Boucher RC, Harden TK: Evidence that UTP and ATP regulate phospholipase C through a common extracellular 5’-nucleotide receptor in human airway epithelial cells. Mol Pharmacol 40: 648–655, 1991

    PubMed  CAS  Google Scholar 

  73. Pfeilschifter J: Comparison of extracellular ATP and UTP signalling in rat renal mesangial cells. Biochem J 272: 469–472, 1990

    PubMed  CAS  Google Scholar 

  74. Henning RH, Duin M, den Hertog A, Nelemans A: Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes. Br J Pharmacol 110: 747–752, 1993

    Article  PubMed  CAS  Google Scholar 

  75. Gibb CA, Singh S, Cook DI, Poronnik P, Conigrave AD: A nucleotide receptor that mobilizes Ca2+in the mouse submandibular salivary cell line ST885. Br J Pharmacol 111: 1135–1139, 1994

    Article  PubMed  CAS  Google Scholar 

  76. Iredale A, Hill SJ: Increases in intracellular calcium via activation of an endogenous P2-purinoceptor in cultured CHO-K1 cells. Br J Pharmacol 110: 1305–1310, 1993

    Article  PubMed  CAS  Google Scholar 

  77. Lazarowski ER, Harden TK: J Biol Chem 269: 11830–11836, 1994

    PubMed  CAS  Google Scholar 

  78. Gylfe E, Hellman B: External ATP mimics carbachol in initiating calcium mobilization from pancreatic β-cells conditioned by previous exposure to glucose. Br J Pharmacol 92: 281–289, 1987

    Article  PubMed  CAS  Google Scholar 

  79. Pearce B, Murphy S, Jeremy J, Morrow C, Dandona P: ATP-evoked Ca2+ mobilisation and prostanoid release from astrocytes: P2-purinergic receptors linked to phosphoinositide hydrolysis. J Neurochem 52: 971–977, 1989

    Article  PubMed  CAS  Google Scholar 

  80. Tawada Y, Furukawa K, Shigekawa M: ATP-induced calcium transient in cultured rat aortic smooth muscle cells. J Biochem 102: 1499–1509, 1987

    PubMed  CAS  Google Scholar 

  81. Davidson JS, Wakefield IK, Sohnius U, Anton P, Van Der Merwe, Millar R.P: A novel extracellular nucleotide receptor coupled to phospho-inositidase-C in pituitary cells. Endocrinology 126: 80–87, 1990

    Article  PubMed  CAS  Google Scholar 

  82. Dubyak GR, El-Moatassim C: Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 34: C577–C606, 1993

    Google Scholar 

  83. Lustig KD, Shian AK, Brake AJ, Julius D: Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci USA 90: 5113–5117, 1993

    Article  PubMed  CAS  Google Scholar 

  84. Erb L, Lustig KD, Sullivan DM, Turner JT, Weisman GA: Functional expression and photoaffinity labelling of a cloned P2U purinergic receptor. Proc Natl Acad Sci USA 90: 10499–10453, 1994

    Google Scholar 

  85. Parr CE, Sullivan DM, Paradiso AM, Lazarowski ER, Burch LH, Olsen JC, Erb L, Weisman GA, Boucher RC, Turner JT: Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proc Natl Acad Sci USA 91: 3275–3279, 1994

    Article  PubMed  CAS  Google Scholar 

  86. Filippini A, Riccioli A, De Cesaris P, Paniccia R, Teti A, Stefanini M, Conte M, Ziparo E: Activation of inositol phospholipid turnover and calcium signalling in rat Sertoli cells by P2-Purinergic receptors: modulation of follicle-stimulating hormone responses. Endocrinology 134: 1537–1545, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rudge, S.A., Hughes, P.J., Brown, G.R., Michell, R.H., Kirk, C.J. (1995). Inositol lipid-mediated signalling in response to endothelin and ATP in the mammalian testis. In: Barnes, J.A., Coore, H.G., Mohammed, A.H., Sharma, R.K. (eds) Signal Transduction Mechanisms. Developments in Molecular and Cellular Biochemistry, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2015-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2015-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5833-6

  • Online ISBN: 978-1-4615-2015-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics