Skip to main content

Regulation of the Human A1 Adenosine Receptor Gene

  • Chapter

Abstract

Adenosine is a physiologically important metabolite and a clinically useful drug. Endogenous release of adenosine mediates a variety of physiologic effects in a wide range of organ systems [1]. These effects are largely transduced via specific adenosine receptors (AR). At present, four subtypes of adenosine receptors have been reported in the literature—A1, A2a, A2b, and A3 receptors—and all have been cloned. The A1 receptor mediates a wide range of physiologic effects, including inhibition of neurotransmitter release, suppression of heart rate and contractility, inhibition of lipolysis, and regulation of smooth muscle tone [2]. Activation of the A1 receptor may produce a dramatic cardioprotective effect against ischemic heart damage [3]. Factors that regulate A1 receptor expression in tissues thus become critically important in understanding physiologic and therapeutic processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olah ME, Stiles GL (1992) Adenosine receptors. Annu Rev Physiol 54:211–225.

    Article  PubMed  CAS  Google Scholar 

  2. Stiles GL (1992) Adenosine receptors. J Biol Chem 267:6451–6454.

    PubMed  CAS  Google Scholar 

  3. Ely SW, Berne RM (1992) Protective effects of adenosine in myocardial ischemia. Circulation 85:893–904.

    Article  PubMed  CAS  Google Scholar 

  4. Ren H, Stiles GL (1994) Characterization of the human A1 adenosine receptor gene: Evidence for alternative splicing. J Biol Chem 269: 3104–3110.

    PubMed  CAS  Google Scholar 

  5. Olah ME, Ren H, Ostrowski J, Jacobson KA, Stiles GL (1992) Cloning, expression, and characterization of the unique bovine A1 adenosine receptor. J Biol Chem 267:10764–10770.

    PubMed  CAS  Google Scholar 

  6. Celano P, Vertino PM, Casero RA Jr (1993) Isolation of polyadenylated RNA from cultured cells and intact tissues Bio Techniques 15: 26–28.

    CAS  Google Scholar 

  7. Tsang SS, Yin X, Guzzo-Arkuran C, Jones VS, Davison AJ (1993) Loss of resolution in gel electrophoresis of RNA: A problem associated with the presence of formaldehyde gradients. Bio Techniques 14:380–381.

    CAS  Google Scholar 

  8. Chomczynski P (1992) One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Analyt Biochem 201:134–139.

    Article  PubMed  CAS  Google Scholar 

  9. Coulter-Karis DE, Hershfield MS (1989) Sequence of full length cDNA for human Sadenosylhomocysteine hydrolase. Ann Hum Genet 53:169–175.

    Article  PubMed  CAS  Google Scholar 

  10. Ren H, Stiles GL (1994) Posttranscriptional mRNA processing as a mechanism for regulation of human A1 adenosine receptor expression. Proc Natl Acad Sci USA 91:4864–4866.

    Article  PubMed  CAS  Google Scholar 

  11. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.

    Article  PubMed  CAS  Google Scholar 

  12. Kozak M (1992) Regulation of translation in eukaryotic systems. Annu Rev Cell Biol 8: 197–225.

    Article  PubMed  CAS  Google Scholar 

  13. Mueller PP, Hinnebusch AG (1986) Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201–207.

    Article  PubMed  CAS  Google Scholar 

  14. Reynolds GA, Basu SK, Osborne TF, Chin DJ, Gil G, Brown MS, Goldstein JL, Luskey KL (1984) HMG CoA reductase: A negatively regulated gene with unusual promoter and 5’ untranslated regions. Cell 38:275–285.

    Article  PubMed  CAS  Google Scholar 

  15. Reynolds GA, Goldstein JL, Brown MS (1985) Multiple mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase determined by multiple transcription initiation sites and intron splicing sites in the 5’-untranslated region. J Biol Chem 260:10369–10377.

    PubMed  CAS  Google Scholar 

  16. Horiuchi T, Macon KJ, Kidd VJ, Volanakis JE (1990) Translational regulation of complement protein C2 expression by differential utilization of the 5’-untranslated region of mRNA. J Biol Chem 265:6521–6524.

    PubMed  CAS  Google Scholar 

  17. Kozak M (1991) An analysis of vertebrate mRNA sequences: Intimations of translational control. J Cell Biol 115:887–903.

    Article  PubMed  CAS  Google Scholar 

  18. Kozak M (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148.

    Article  PubMed  CAS  Google Scholar 

  19. Marth JD, Overell RW, Meier KE, Krebs EG, Perlmutter RM (1988) Translational activation of the Ick proto-oncogene. Nature 332: 171–173.

    Article  PubMed  CAS  Google Scholar 

  20. Williams NP, Hinnebusch AG, Donahue TF (1989) Mutations in the structural genes for eukaryotic initiation factors 2a and 2b of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA Proc Natl Acad Sci USA 86:7515–7519.

    Article  PubMed  CAS  Google Scholar 

  21. Pekhlersky RI, Chernov BK, Rubtsov PM (1992) Variants of the 5’-untranslated sequence of human growth hormone receptor mRNA. Mol Cell Endocrinol 90:103–109.

    Article  Google Scholar 

  22. Maglione D, Guerriero V, Rambaldi M, Russo G, Persico MG (1993) Translation of the placenta growth factor mRNA is severely affected by a small open reading frame localized in the 5’ untranslated region. Growth Factors 8: 141–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ren, H., Stiles, G.L. (1995). Regulation of the Human A1 Adenosine Receptor Gene. In: Belardinelli, L., Pelleg, A. (eds) Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2011-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2011-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5831-2

  • Online ISBN: 978-1-4615-2011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics