Adaptation of the heart to ischemia by preconditioning: Effects on energy equilibrium properties of sarcolemmal ATPases and release of cardioprotective proteins

  • Attila Ziegelhöffer
  • Norbert Vrbjar
  • Ján Styk
  • Albert Breier
  • Andrej Džurba
  • Tatjana Ravingerová
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 14)


Ischemic preconditioning of the heart is referred as a manifest increase in tolerance of the myocardium to otherwise damaging ischemic insult, achieved by one or few consequent initial short exposures to ischemia, each followed by reperfusion of the ischemic area. Several mechanisms such as opening of collateral vessels, the action of catecholamines, inositol phosphates, G-proteins and/or adenosine; inhibition of mitochondrial ATPase, the effects of different endogenous protective substances like heat stress or shock proteins, etc., are believed to cooperate in the mechanism of induction of preconditioning or in maintaining its effect. The present study is an attempt to extend the present knowledge about preconditioning from two aspects: i.) the peculiarities of energy equilibrium in preconditioned myocardium including adaptation of cardiac sarcolemmal ATPases to ischemia and/or hypoxia, and ii) participation of a new endogenous cardioprotective substance in the mechanism of preconditioning. The energy equilibrium in preconditioning is characterized by adaptation of cardiac energy demands to the capacity of energy production and delivery decreased by anaerobiosis and is manifested by constant ratios between ATP, ADP, AMP and the sum ofADN. Principles are proposed that may enable a prediction and mathematical modelling of the balanced energetic state in the preconditioned myocardium. These principles are based on thermodynamics and involve besides others a more economic handling of ATP by sarcolemmal ATPases. The latter enzymes adapt themselves to lowered availability ofATP by decreasing besides their Vmax also their values of Km (increase in the affinity) for ATP and some of them even adjust their activation energy (the anaerobiosis-induced elevation of Ea t is missing). It was also revealed that during preconditioning several up to now not described shock proteins unlike proteins (also glycoproteins) are released from the myocardium into the coronary blood. When these proteins indicated as a HS fraction were isolated, partially purified and in concentrated form applied into the coronary circulation, they were capable to induce in preliminary experiments a cardioprotective effect resembling that of the ischemic preconditioning. (Mol Cell Biochem 147: 129–137, 1995)

Key words

ischemic preconditioning of the myocardium equilibrium energetics of the myocardium sarcolemmal ATPases adaptation of ATPases to ischemia or hypoxia glycoprotein release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia. A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136, 1986PubMedCrossRefGoogle Scholar
  2. 2.
    Reimer KA, Murry CE, Jennings RB: Cardiac adaptation to ischemic preconditioning increases myocardial tolerance to subsequent ischemic episodes. Circulation 82: 2266–2268, 1990PubMedCrossRefGoogle Scholar
  3. 3.
    Downey JM: Ischemic preconditioning. Nature’s own cardioprotective intervention. Trends Cardiovasc Med 2: I70–176, 1992CrossRefGoogle Scholar
  4. 4.
    Parratt JR: Vegh A: Pronounced antiarrhythmic effects of ischemic preconditioning. Cardioscience 5: 9–18, 1994PubMedGoogle Scholar
  5. 5.
    Walker DM, Yellon DM: Ischemic preconditioning: from mechanism to exploatation. Cardiovasc Res 26: 734–739, 1992PubMedCrossRefGoogle Scholar
  6. 6.
    Marber MS, Latchman DS, Walker DM, Yellon DM: Cardiac stress protein elevation 24 h after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88: 1264–1272, 1993PubMedCrossRefGoogle Scholar
  7. 7.
    Lawson CS: Preconditioning in man: progress and prospects. In: S. Haunso and K. Kjeldsen (eds). International Society for Heart, Research, European Section Meeting, Copenhagen (Denmark), June 8-I1, 1994. Mondzzi Editore, Bologna, 1994, pp 81–85Google Scholar
  8. 8.
    Ziegelhöffer A, Grunermel J. Dturba A, Procházka F. Kolar F. Vrbjar N, Pelouch V, Ost’ádal B. Szekeres L: Sarcolemmal cation transport systems in rat hearts acclimatized to high altitude hypoxia, influence of 7-oxo prostacyclin, In: B. Oátádal and N.S. Dhalla (eds). Heart Function in Health and Disease. Kluwer Academic Publishers. Norwell, Massachusetts, 1993, pp 219–228CrossRefGoogle Scholar
  9. 9.
    Krause EG, Szekeres L: On the mechanism and possible therapeutic application of delayed adaptation of the heart to stress situations. Mol Cell Biochem 1994 in pressGoogle Scholar
  10. 10.
    Šiška K, Ziegelhöffer A, Fedelešová M, Holec V, Slezák J, Styk J, Pancza D, Gabauer I: Effect of Intra-aortic balloon counterpulsation in experimental myocardial injury following acute coronary occlusion. Biochemical, ultrastructural and physiological aspects. Cardiovasc Res 8: 404–414, 1974Google Scholar
  11. 11.
    Deutsch E, Berger M, Kussmaul WG, Hirschfield JW, Hermann HC, Laskey WK: Adaptation to ischemia during percutaneous transluminal coronary angioplasty: clinical metabolic and hemodynamic features. Circulation 82: 2044–2051, 1990PubMedCrossRefGoogle Scholar
  12. 12.
    Ambrosio G, Tritto I, Chiariello M: Oxygen free radicals and preconditioning. In: S. Haunso and K. Kjeldsen (eds). International Society for Heart Research. European Section Meeting, Copenhagen, Denmark, June 8–11, 1994. Monduzzi Editore, Bologna, 1994, pp 87–91Google Scholar
  13. 13.
    Liu GS, Thornton J, Van Winkle DM, Stanley AWH, Olsson RA, Downey JM: Protection against infarction afforded by preconditioning is mediated by A, adenosine receptors in rabbit heart. Circulation 84: 350–356, 1991PubMedCrossRefGoogle Scholar
  14. 14.
    Mullane K: Myocardial preconditioning. Part of the adenosine revival. Circulation 85: 845–847, 1992PubMedCrossRefGoogle Scholar
  15. 15.
    Kitazake M, Hori M, Takashima S, Sato H, Inone M, Kamada T: Ischemic preconditioning increases adenosine release and 5’nucleotidase activity during myocardial ischemia and reperfusion in dogs. Circulation 87: 208–215, 1993CrossRefGoogle Scholar
  16. 16.
    Ravingerová T, Pyne NJ, Parratt JR: Ischaemic preconditioning in the rat heart: the role of G-proteins and adrenergic stimulation. Mol Cell Biochem 1994, in pressGoogle Scholar
  17. 17.
    Végh A, Szekeres L, Parratt JR: Preconditioning of the ischemic myocardium: involvement of the L-arginine nitric oxide pathway. Br J Pharmacol 107: 648–652, 1992PubMedCrossRefGoogle Scholar
  18. 18.
    Végh A, Szekeres L, Parratt JR: Protective effects of preconditioning of the ischemic myiocardium involve cyclo-oxygenase products. Cardiovasc Res 24: 1020–1023, 1990PubMedCrossRefGoogle Scholar
  19. 19.
    Parratt JR: Endogenous myocardial protective substances. Cardiovasc Res 27: 698–702, 1993Google Scholar
  20. 20.
    Vegh A,Papp JGy,Szekeres L,Parratt JR: Evidence that bradykinin contributes to the pronounced effects of ischemic preconditioning. Br J Pharmacol 1993,in pressGoogle Scholar
  21. 21.
    Brand T. Sharma HS, Fleischmann KE, Duncker DJ, McFalls EO, Verdow PD, Schaper W: Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Cardiovasc Res 71: 1351–1360, 1992Google Scholar
  22. 22.
    Gross GJ, Auchampach JA: Blockade of ATP sensitive potassium channels prevents myocardial preconditioning in dogs. Circulation Res 70: 223–235, 1992Google Scholar
  23. 23.
    Mitchell MB, Parker CG, Meng X, Brew EG, Ao L, Brown J. Harken A, Banjeree A: Protein kinase C mediates preconditioning in isolated rat heart. Circulation 884: 1–633, 1993Google Scholar
  24. 24.
    Fulton RM, Hutchinson EC, Jones AN: Ventricular weight in cardiac hypertrophy. Brit Heart J 14: 413–420, 1952PubMedCrossRefGoogle Scholar
  25. 25.
    Ziegelhöffer A, Procházka J, Pelouch V, Ošťádal B, Džurba A, Vrbjar N: Increased affinity to substrate in sarcolemmal ATPases from hearts acclimatized to high altitude hypoxia. Physiol bohemoslov 36: 404–415, 1987Google Scholar
  26. 26.
    Vrbjar N, Soos J, Ziegelhöffer A: Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na,K) ATPase. Gen Physiol Biophys 3: 317–325, 1984PubMedGoogle Scholar
  27. 27.
    Taussky HH, Shorr EE: A microcolorimetric method for determination of inorganic phosphorus. J Biol Chem 202: 575–585, 1953.Google Scholar
  28. 28.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193, 265–275, 1953Google Scholar
  29. 29.
    Reimer KA, Murry CE, Yamasawa I, Hill. ML, Jennings RB: Four brief episodes of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 251: H1306–H1316,1986PubMedGoogle Scholar
  30. 30.
    Lange R, Ingwall JS, Hale SL, Alker KJ, Kloner RA: Effects of recurrent ischemia on myocardial high energy phosphate content in canine hearts. Basic Res Cardiol 79: 469–478, 1984PubMedCrossRefGoogle Scholar
  31. 31.
    Swain JL, Sabina ML, Hines JJ, Greenfield JC Jr, Holmes EW: Repetitive episodes of brief ischemia (12 min) do not produce a cumulative depletion of high energy phosphate compounds. Cardiovasc Res 18: 264–269, 1984PubMedCrossRefGoogle Scholar
  32. 32.
    Hoffemeister HM, Mauser M, Schaper W: Repeated episodes of regional myocardial ischemia: Effect on local function and high energy phosphate levels. Basic Res Cardiol 81: 361–372, 1986CrossRefGoogle Scholar
  33. 33.
    Ziegelhoffer A, deJong JW, Ferrari R. Turi Nagy L: Ischemic preconditioning of the myocardium as a result of adaptation of enzymes catalyzing energy consuming processes to decreased accessibility of metabolic energy. A theoretical study based upon real measurements. 1. J Mol Cell Cardiol 24 (Supplement I): S.150, 1992Google Scholar
  34. 34.
    Hoffemeister HM, Mauser M, Schaper W: Repeated episodes of regional myocardial ischemia: Effect on local function and high energy phosphate levels. Basic Res Cardiol 81: 361–372, 1986CrossRefGoogle Scholar
  35. 35.
    Vrbjar N, Slezák J, Ziegelhöffer A, Tribulová N: Features of the (Na,K)-ATPase of cardiac sarcolemma with particular reference to myocardial ischemia. Europ Heart J 12 (Supplement F): 149–152, 1991CrossRefGoogle Scholar
  36. 36.
    Vrbjar N, Džurba A, Ziegelhöffer A: Kinetic and thermodynamic properties of membrane bound Ca-ATPase with low affinity to calcium in cardiac sarcolemma; response to global ischemia of the heart. Life Sci 53: 1875–1973, 1993CrossRefGoogle Scholar
  37. 37.
    Vrbjar N, Diurba A, Ziegelhöffer A: Enzyme kinetics and activation energy of (Na,K)-ATPase in ischemic hearts: Influence of the duration of ischemia. Gen Physiol Biophys 13: 405–411,1994PubMedGoogle Scholar
  38. 38.
    Dhalla NS, Ziegelhöffer A, Harrow JAC: Regulatory role of membrane sysytems in heart function. Review Canad J Physiol Pharmacol 55: 1211–1234, 1977CrossRefGoogle Scholar
  39. 39.
    Fedelesová M, Dhalla NS, Balasubramanian V, Ziegelhöffer A: Energy dependent stimulation of membrane bound Mg2+- and K+-Na+- ATPase by glucose. In: P. Hatt (ed). Les Surcharges Cardiaques (Heart Overloading). Colloque INSERM, Paris, 1972, pp 217–221Google Scholar
  40. 40.
    Reimer AK, Jennings RB: Myocardial ischemia, hypoxia and infarction. In: H.A. Fozard et al. (eds). The Heart and Cardiovascular System, Second Edition. Raven Press Ltd., New York, 1992, pp 1875–1973Google Scholar
  41. 41.
    Ondrejicková O, Ziegelhöffer A, Gabauer I, Sotníková R, Styk J, Gibala P, Sedlák J, Horáková L: Evaluation of ischemia-reperfusion injury by malondialdehyde, glutathione, and gamma-glutamyl transpeptidase:lack of specific local effects in diverse parts of the heart following acute coronary occlusion. Cardioscience 4: 225–230, 1993PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Attila Ziegelhöffer
    • 1
    • 3
  • Norbert Vrbjar
    • 1
  • Ján Styk
    • 1
  • Albert Breier
    • 2
  • Andrej Džurba
    • 1
  • Tatjana Ravingerová
    • 2
  1. 1.Institute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Laboratory of Protein ChemistryInstitute of Molecular Physiology and Genetics and Institute for Heart ResearchBratislavaSlovak Republic
  3. 3.Institute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations