Skip to main content

Myocardial Lipid Peroxidation and Diabetes

  • Chapter
  • 71 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 167))

Summary

Diabetic patients develop cardiomyopathy, characterized mainly by left ventricular contractile dysfunction and congestive heart failure. Vitamin E-quinone and lipid peroxidation levels in the heart ventricles are signi ficantly higher in diabetic rats compared with control rats. This increase was prevented in insulin-treated diabetic rats. Hyperglycemia can generate oxygen radicals and cause membrane lipid peroxidation in the myocardium. Lipid peroxidation and its products can cause hyperviscosity and hypercoagulability of blood, and oxidative modification of lipoproteins. This can result in altered blood, and atherosclerosis. On the other hand, lipid peroxides can inhibit prostacyclin synthetase and causes imbalance in the prostacyclin and thromboxane levels, which can induce vasoconstriction. Thus, increased lipid peroxidation may have a role in the altered contractile property of heart ventricles and the development of cardiomyopathy associated with diabetes.

Diabetes mellitus has been listed as the seventh leading cause of death and is frequently associated with cardiovascular disease [1]. The reasons for increased cardiovascular disease in diabetic patients are not completely understood. Many epidemiologic studies provide evidence that poor glycémie control in diabetic patients significantly increases their risk for coronary heart disease. Risk factors, such as oxidation of lipoproteins, protein glycation, and hypercoagulability of blood, are direct consequences of hyperglycemia and contribute in varying degrees to the development of cardiovascular disease in diabetes mellitus [2].

Recently, Morel and Chislom [3] have observed oxidized lipoproteins in diabetic rats with obvious implications for atherogenesis and cardiovascular disease. Oxidized low-density lipoprotein (LDL) is cytotoxic and is likely to be responsible for foam cell necrosis and the development of an extracellular lipid core and atherosclerotic lesions [4].

Platelets from diabetic subjects exhibit enhanced adhesiveness, increased aggregability to various agonists, decreased survival, and increased generation of thromboxane [5-7]. Thromboxane is known to induce not only aggregation, but also vasoconstrictor activity [7]. At least some of these functional changes may be a result of the nonenzymatic glycation of platelet proteins, particularly glycoproteins, and the altered phospholipid asymmetry of platelets in diabetes [5-8]. Similarly, erythrocytes of diabetic patients are known to have several abnormalities, such as excessive aggregation, reduced deformability, hyperviscosity, glycosylation of proteins, sorbitol accumulation, oxidative damage, phosphatidylserine (PS) externalization in the outer membrane bilayer, and increased adhesivity to endothelial cells and its relation to the vascular complications [9-19]. It is suggested that both platelets and erythrocytes are involved in endothelial alteration, platelet deposition, and atherosclerotic processes and the impairment of diabetic microvascular flow and complications [20].

Thus, at least some risk of development of cardiovascular disease may be genetic, others are associated with increased glycation of proteins, and some may be associated with the activation of aldose reductase caused by hyperglycemia. This chapter discusses the association between the cardiomyopathy of diabetes and the increased activity of reactive oxygen species and oxidative cellular damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kännel WB, McGee DL. Diabetes and cardiovascular disease: The Framingham study. JAMA 241:2035–2038, 1978.

    Article  Google Scholar 

  2. Ruderman NB, Williamson JR, Brownlee M. Glucose and diabetic vascular disease. FASEB J 6:2905–2914, 1992.

    PubMed  CAS  Google Scholar 

  3. Morel DW, Chisolm GM. Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity. J Lipid Res 30:1827–1834, 1989.

    PubMed  CAS  Google Scholar 

  4. Hessler JR, Morel DW, Lewis LJ, Chisolm GM. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Atherosclerosis 3:215–222, 1983.

    CAS  Google Scholar 

  5. Watala C. Altered structural and dynamic properties of blood cell membranes in diabetes mellitus. Diabet Med 10:13–20, 1993.

    Article  PubMed  CAS  Google Scholar 

  6. Jones RL, Paradise C, Peterson CM. Platelet survival in patients with diabetes mellitus. Diabetes 30:486–489, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Gisinger C, Watanabe J, Colwell JA. Vitamin E and platelet eicosanoids in diabetes mellitus. Prostalandins Leukotr Essent Fatty Acids 40:169–176, 1990.

    Article  CAS  Google Scholar 

  8. Lupu F, Calb M, Fixman A. Alterations of phospholipid asymmetry in the membrane of spontaneously aggregated platelets in diabetes. Thromb Res 50:605–616, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Juhan-Vague I, Roul C, Rahmani-Jourdheil D, Mishal Z. Rapid modifications of biophysical and biochemical parameters of red blood cell membrane from insulin dependent diabetics after insulin administration. Klin Wochenschr 64:1046–1049, 1986.

    PubMed  CAS  Google Scholar 

  10. Limpson LO. Intrinsic stiffening of red blood cells as the fundamental cause of diabetic nephropathy and microangiopathy. Nephron 39:344–351, 1985.

    Article  Google Scholar 

  11. Watala C, Zawodniak M, Bryszewaska M, Nowak S. Nonenzymatic protein glycosylation. I. Lowered erythrocyte membrane fluidity in juvenile diabetes. Ann Clin Res 17:327–330, 1985.

    PubMed  CAS  Google Scholar 

  12. Wautier JL, Paton RC, Wautier MP, Pintigny D, Abadie E, Passa P, Caen JP. Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N Engl J Med 305:237–242, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Malone JL, Knox G, Harvey C. Sorbitol accumulation is altered in type I (insulin dependent) diabetes mellitus. Diabetologia 27:509–513, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Jain SK, McVie R, Duett J, Herbst JJ. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Jain SK, Levine SN, Duett J, Hollier B. Reduced vitamin E and increased lipofuscin products in erythrocytes of diabetic rats. Diabetes 40:1241–1244, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Rajeswari P, Natarajan R, Nadler JL, Kumer D. Glucose induces lipid peroxidation and inactivation of membrane associated iron transport enzymes in human erythrocytes in vivo and in vitro. J Cell Physiol 149:100–109, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Jain SK, Levine SN, Duett J, Hollier B. Reduced vitamin E and increased lipofuscin products in erythrocytes of diabetic rats. Diabetes 40:1241–1244, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Watala C, Jóźwiak Z. Phospholipid asymmetry in red blood cell membranes of type 1 diabetic children. Med Sei Res 17:895–896, 1989.

    Google Scholar 

  19. Wali RK, Jaffe S, Kumar D, Kalra VK. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes 37: 104–111, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Turitoo VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system, physical role of red blood cells. Microvasc Res 9:335–344, 1976.

    Article  Google Scholar 

  21. Sat Y, Hotta N, Sakamoto N, Matsuoka S, Ohishi N, Yagi K. Lipid peroxide level in plasma of diabetic patients. Biochem Med 21:104–107, 1979.

    Article  Google Scholar 

  22. Niimi K, Hiraiwa N. The correlation between diabetic retinopathy and serum lipoperoxide. Nippon Ganka Gakkai Zasshi 89:379–382, 1985.

    PubMed  CAS  Google Scholar 

  23. Hayakawa M, Kuzuya F. Free radicals and diabetes mellitus. Nippon Ronen Igakkai Zasshi 27:149–154, 1990.

    PubMed  CAS  Google Scholar 

  24. Mooradian AD. Increased serum conjugated dienes in elderly diabetic patients. J Am Geriatr Soc 39:571–574, 1991.

    PubMed  CAS  Google Scholar 

  25. Jennings PE, Jones AF, Florkowski CM, Lunec J, Barnett AH. Increased diene conjugates in diabetic subjects with microgangiopathy. Diabet Med 4:452–456, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Pritchard KA Jr, Patel ST, Karpen CW, Newman HA, Panganamala, RV. Triglyceridelowering effect of diretary vitamin E in streptozocin-induced diabetic rats. Increased lipoprotein lipase activity in livers of diabetic rats fed high dietary vitamin E. Diabetes 35:278–281, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Higuchi Y. Lipid peroxides and β-tocopherol in rat streptozotocin-induced diabetes mellitus. Acta Med Okayama 36:165–175, 1982.

    PubMed  CAS  Google Scholar 

  28. Dohi T, Kawamura K, Morita K, Okamoto H, Tsujimoto A. Alterations of the plasma selenium concentrations and the activities of tissue peroxide metabolism enzymes in streptozotocin-induced diabetic rats. Horm Metab Res 20:671–675, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Nishigaki I, Hagihara M, Tsunekawa H, Maseki M, Yagi K. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem Med 25:373–378, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Babiy A V, Gebicki JM, Sullivan DR, Willey K. Increased Oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Biochem Pharmacol 43:995–1000, 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Jain SK, McVie R. Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism 43:306–309, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Parinandi NL, Thompson EW, Schmid HH. Diabetic heart and kidney exhibit increased resistanced to lipid peroxidation. Biochim Biophys Acta 1047:63–69, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rat. Diabetes 36:1014–1018, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Asayama K, Yokota S, Kato K. Peroxisomal oxidases in various tissues of diabetic rats. Diabetes Res clin Pract 11:89–94, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Matkovics B, Varga SI, Szabo L, Witas H. The effect of diabetes on the activities of the peroxide metabolizing enzymes. Horm Metab Res 14:77–79, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Kaul N, Siveski-Iliskovic N, Thomas TP, Singal PK. Effect of probucol treatment on antioxidant changes during diabetic cardiomyopathy. Circulation 86:1–62, 1992.

    Article  Google Scholar 

  37. Jain SK, Levine SN. Elevated lipid peroxidtation and vitamin E quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radie Biol Med 18, 337–341, 1995, in press.

    Google Scholar 

  38. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J 256:205–212, 1988.

    CAS  Google Scholar 

  39. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412, 1991.

    Article  PubMed  CAS  Google Scholar 

  40. Jain SK. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264:21340–21345, 1989.

    PubMed  CAS  Google Scholar 

  41. Tesfamariam Belay, Cohen Richard A. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 263:H321–H326, 1992.

    Google Scholar 

  42. Singal PK, Petkau A, Gerrard JM, Hrushovetz S, Foerster J. Free radicals in health and disease. J Mol Cell Biochem 84:121–122, 1990.

    Article  Google Scholar 

  43. Oberly LW. Free radicals and diabetes. Free Radic Biol Med 5:113–124, 1988.

    Article  Google Scholar 

  44. Hayakawa M, Kuzuya F. Free radicals and diabetes mellitus. Nippon Ronen Igakkai Zasshi 27:149–154, 1990.

    PubMed  CAS  Google Scholar 

  45. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. Free radicals and the heart. J Pharmacol Toxicol Methods 30:55–67, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Jain SK, Hochstein P. Polymerization of membrane components in aging red blood cells. Biochem Biophys Res Commun 92:247–254, 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Jain SK, Shohet SB. A novel phospholipid in irreversibly sickled cells: Evidence for in vivo peroxidative damage in sickle cell disease. Blood 63:362–367, 1984.

    PubMed  CAS  Google Scholar 

  48. Haberland ME, Fong DE, Cheng L. Malondialdehyde altered protein occurs in atheroma of Watanabe heritable hyperlipidimic rabbits. Science 241:215–218, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Boyd HC, Gown AM, Wolbauer G, Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol 135:815–825, 1989.

    PubMed  CAS  Google Scholar 

  50. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoprotein leads to cholesterol ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 77:2214–2218, 1980.

    Article  PubMed  CAS  Google Scholar 

  51. Lyons TJ. Oxidized low density lipoproteins: A role in the pathogenesis of atherosclerosis in diabetes? Diabet Med 8:411–419, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Schaffer SW. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol Cell Biochem 107:1–20, 1991.

    Article  PubMed  CAS  Google Scholar 

  53. Ganguly PK, Thiliveris JA, Mehta A. Evidence against the involvement of nonenzymatic glycosylation in diabetic cardiomyopathy. Metabolism 39:769–773, 1990.

    Article  PubMed  CAS  Google Scholar 

  54. Weiss ST, Turk J, Needleman P. A mechanism for the hydroperoxide-mediated inactivation of prostacyclin synthetase. Blood 53:1191–1196, 1979.

    PubMed  CAS  Google Scholar 

  55. Sanderud J, Norstein J, Saugstad OD. Reactive oxygen metabolites produce pulmonary vasoconstriction in young pigs. Pediatr Res 29:543–547, 1991.

    Article  PubMed  CAS  Google Scholar 

  56. Rhoades RA, Packer CS, Roepke DA, Jin N, Meiss RA. Recative oxygen species alter contractile properties of pulmonary arterial smooth muscle. Can J Physiol Pharmacol 68:1581–1589, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. Iwama Y, Muramatsu M, Toki Y, Miyazaki Y. The mechanism of vasoconstriction induced by oxygen-derived free radicals in rat aorta. Jpn J Pharmacol 58(Suppl 2):309, 1992.

    Google Scholar 

  58. Gurtner GH, Knoblauch A, Smith PL, Sies H, Adkinson NF. Oxidant and lipid-induced pulmonary vasoconstriction mediated by arachidonic acid metabolites. J Appl Physiol 55: 949–954, 1983.

    PubMed  CAS  Google Scholar 

  59. Asano M, Hidaka H. Contractile responses of isolated rabbit aortic strips to unsaturated fatty acid peroxides. J Pharmacol Exp Ther 208:347–353, 1979.

    PubMed  CAS  Google Scholar 

  60. Hubel CA, Davidge ST, McLaughlin MK. Lipid hydroperoxides potentiate mesenteric artery vasoconstrictor responses. Free Radic Biol Med 14:397–407, 1993.

    Article  PubMed  CAS  Google Scholar 

  61. Liao DF, Chen X. Prostacyclin-mediated protection by angiotensin converting enzyme inhibitors against injury of aortic endothelium by free radicals. Cardioscience 3:79–84, 1992.

    PubMed  CAS  Google Scholar 

  62. Smith MT, Evans CG, Thor H, Orrenius S. Quinone-induced oxidative Injury to cells and tissues. In: Ocidative Stress. Sies H (ed). New York: Academic Press, 1985, pp 91–113.

    Google Scholar 

  63. Pieper GM. Arachidonic acid causes postischemic dysfunction in control but not diabetic hearts. Am J Physiol 258:H923–H930, 1990.

    PubMed  CAS  Google Scholar 

  64. Sukalski KA, Pinto KA, Berntson JL. Decreased susceptibility of liver mitochondria from diabetic rats to oxidative damage and associated increase in α-tocopherol. Free Radie Biol Med 14:57–65, 1993.

    Article  CAS  Google Scholar 

  65. Bjorneboe A, Bjorneboe GEA, Bode E, Hagen BF, Kueseth N, Drevon CA. Transport and distribution of alphatocopherol in lymph, serum, and liver cells in rats. Biochim Biophys Acta 889:310–315, 1986.

    Article  PubMed  CAS  Google Scholar 

  66. Konorev EA, Baker JE, Joseph J, Kalyanaraman B. Vasodilatory and toxic effects of spin traps on aerobic cardiac function. Free Radic Biol Med 14:127–137, 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Torii M, Ito H, Suzuki T. Lipid peroxidation and myocardial vulnerability in hypertrophied SHR myocardium. Exp Mol Pathol 57:29–38, 1992.

    Article  PubMed  CAS  Google Scholar 

  68. Siveski-Iliskovic N, Kaul N, Singal PK. Probucol promotes endogenous antioxidants and provids protection against Adriamycin-induced cardiomyopathy in rats. Circulation 89: 2829–2835, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jain, S.K. (1995). Myocardial Lipid Peroxidation and Diabetes. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics