Skip to main content

Differential Regulation of Calmodulin-Dependent Cyclic Nucleotide Phosphodiesterase Isozymes

  • Chapter
Mechanisms of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 167))

  • 69 Accesses

Summary

Calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) is one of the key enzymes involved in the complex interactions that occur between the cyclic nucleotide and Ca2+ second messenger systems. This enzyme is characterized by a high Km for cAMP and a lower Km for cGMP. CaMPDE exists in different isozymic forms that exhibit distinct molecular and /or catalytic properties. Four CaMPDE isozymes have been purified close to homogeneity from bovine tissue in this laboratory. Immunologic, kinetic, and regulatory characterization have revealed subtle differences among these enzymes. The 63 kD CaMPDE is kinetically distinct from the other three isozymes. This isozyme is also further distinguished from other isozymes by the ginsenoside inhibition study. Ginsenosides are found to be potent inhibitors of brain 60 kD, heart and lung CaMPDE isozymes, but not of the brain 63 kD isozyme. The three other members — brain 60 kD CaMPDE, heart CaMPDE, and lung CaMPDE — show differential activation by calmodulin and Ca2+. These observations are consistent with the notion that differential regulation by calmodulin and Ca2+ kinetics inhibition are important functions of these isozymes that provide fine-tuning mechanisms for calmodulin action.

Kakiuchi and Yamazaki [1] originally demonstrated the existence of a Ca2+-stimulated cyclic nucleotide phosphodiesterase in rat brain. In addition, they discovered an endogenous brain protein factor that could enhance the Ca2+ sensitivity of the enzyme [2]. It was subsequently established [3] that the protein factor was identical to the protein activator of cyclic nucleotide phosphodiesterase (later called calmodulin), which was originally discovered by Cheung [4,5], and that stimulation of the cyclic nucleotide phosphodiesterase required the simultaneous presence of both Ca2+ and calmodulin (CaM) [3,6]. The activity of calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) was found to be widely distributed in mammalian tissues and other eukaryotes [7–11]. CaMPDE is one of the most intensively studied and best characterized of the multiple phosphodiesterases (PDEs). The enzyme has been purified to homogeneity and characterized in terms of molecular properties [12-19]. Initially, it was thought that a single form of enzyme existed in all tissues [8], but with the availability of specific monoclonal antibodies it has become clear that the CaMPDE exists as tissue-specific and immunologic distinct isozymes [18–24].

The CaMPDE isozymes show subtle differences in kinetic and regulatory properties and shed new light on their functions. They are differentially regulated by CaM [19,25,26], Ca2+ [27] and/or by protein phosphorylation mechanisms [19,28-30]. The purpose of this chapter is to summarize some of the significant advances that have been carried in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kakiuchi S, Yamazaki R. Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3’,5’-nucleotide posphodiesterase. Biochem Biophys Res Commun 41:1104–1110, 1970.

    Article  PubMed  CAS  Google Scholar 

  2. Kakiuchi S, Yamazaki R, Nakajima H. Properties of a heat-stable phosphodieterase activating factor isolated from brain extract. Proc Jpn Acad 46:587–592, 1970.

    CAS  Google Scholar 

  3. Teo TS, Wang JH. Mechanism of activation of a cyclic adenosine 3’,5’-monophosphate phosphodiesterase from bovine heart by calcium ions. J Biol Chem 248:5950–5955, 1973.

    PubMed  CAS  Google Scholar 

  4. Cheung WY, Cyclic 3’,5’-nucleotide phosphodiesterase. Determination of an activator. Biochem Biophys Res Commun 38:533–538, 1970.

    Article  PubMed  CAS  Google Scholar 

  5. Cheung WY. Cyclic 3’,5’-nucleotide phosphodiesterase. J Biol Chem 246:2859–2869, 1971.

    PubMed  CAS  Google Scholar 

  6. Kakiuchi S, Yamazaki R, Teshima Y, Uenishi K. Regulation of nucleotide cyclic 3’,5’-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2+. Proc Natl Acad Sci USA 70:3526–3530, 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Kakiuchi S, Yamazaki R, Teshima Y, Uenishi K, Miyamato E. Multiple cyclic nucleotide phosphodiesterase activities from rat tissues and occurence of a calcium-plus-magnesium-ion-dependent phosphodiesterase and its protein activator. Biochem J 146:109–120, 1975.

    PubMed  CAS  Google Scholar 

  8. Well JM, Hardman JG. Cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 8:119–143, 1977.

    Google Scholar 

  9. Beavo JA. Multiple isozymes of cuclic nucleotide phosphodiesterase. Adv Second Messenger Phosphoprotein Res 22:1–39, 1988.

    PubMed  CAS  Google Scholar 

  10. Sharma RK, Mooibroek M, Wang JH. Calmodulin-stimulated cyclic nucleotide phosphodiesterase isozymes. Mol Aspects Cell Reg 5:265–295, 1988.

    Google Scholar 

  11. Wang, JH, Sharma, RK, Mooibroek MJ. Calmodulin-stimulated cyclic nucleotide phosphodiesterase. Mol Pharm Cell Reg 2:19–59, 1990.

    CAS  Google Scholar 

  12. Morrill ME, Thompson ST, Stellwagen E. Purification of a cyclic nucleotide phosphodiesterase from bovine brain using blue dextran-Sepharose chromatography. J Biol Chem 254:4371–4374, 1979.

    PubMed  CAS  Google Scholar 

  13. Sharma RK, Wang TH, Wirch E, Wang JH. Purification and proterities of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem 255:5916–5923, 1980.

    PubMed  CAS  Google Scholar 

  14. Kincaid RL, Vaughan M. Affinity chromatography of brain cyclic nucleotide phosphodiesterase using 3-(2-pyridyldithiol) propionyl-substituted calmodulin linked to thion-Sepharose. Biochemistry 22:826–830, 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Kincaid RL, Manganiello VC, Odya CE, Osborne JC, Smith-Coleman IE, Danello MA, Vaughan M. Purification and properties of calmodulin-stimulated phosphodiesterase from mammalian brains. J Biol Chem 259:5158–5166, 1984.

    PubMed  CAS  Google Scholar 

  16. Shenolikar S, Thompson WJ, Strada SJ. Characterization of Ca2+-calmodulin-stimulated cyclic GMP phosphodiesterase from bovine brain. Biochemistry 24:672–678, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. LaPorte DC, Toscano WA, Storm DR. Cross-linking of iodine-125-labelled, calcium-dependent regulatory protein to the Ca2+-sensitive phosphodiesterase purified from bovine heart. Biochemistry 18:2820–2825, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Hansen RS, Beavo JA. Purification of two calcium calmodulin-dependent forms of cyclic nucleotide phosphodiesterase by using conformation-specific monoclonal antibody chromatography. Proc Natl Acad Sci USA 79:2788–2792, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Sharma RK. Phosphorylation and characterization of bovine heart calmodulin-dependent phosphodiesterase. Biochemistry 30:5964–5968, 1991.

    Article  Google Scholar 

  20. Sharma RK, Adachi A-M, Adachi K, Wang JH. Demonstration of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme by nomoclonal antibodies. J Biol Chem 259:9248–9254, 1984.

    PubMed  CAS  Google Scholar 

  21. Purvis K, Olsen A, Hansson V. Calmodulin-dependent cyclic nucleotide phosphodiesterase in the immature rat testis. J Biol Chem 256:11434–11441, 1981.

    PubMed  CAS  Google Scholar 

  22. Vandermeers A, Vandermeers-Piret M-C, Rathe J, Chirstophe J. Purification and kinetic properties of two soluble forms of calmodulin-dependent cyclic nucleotide phosphodiesterase from rat pancreas. Biochem J 211:341–347, 1983.

    PubMed  CAS  Google Scholar 

  23. Sharma RK, Wang JH. Purification and characterization of bovine lung calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem 261:14160–14166, 1986.

    PubMed  CAS  Google Scholar 

  24. Rossi P, Giorgi M, Geremia R, Kincaid RL. Testis-specific calmodulin-dependent phosphodiesterase. A distinct high affinity cAMP isozyme immunologically related to brain calmodulin-dependent cGMP phophodiesterase. J Biol Chem 263:15521–15527, 1988.

    PubMed  CAS  Google Scholar 

  25. Hansen RS, Beavo JA. Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody. J Biol Chem 261:14636–14645, 1986.

    PubMed  CAS  Google Scholar 

  26. Mutus B, Karuppiah N, Sharma RK, MacManus JP. The differential stimulation of brain and heart cyclic-AMP phosphodiesterase by oncomodulin. Biochem Biophys Res Commun 131:500–506, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Sharma RK, Kalra J. Characterization of calmodulin dependent cyclic nucleotide phosphodiesterase isozy mes. Biochem J 299:97–100, 1994.

    PubMed  CAS  Google Scholar 

  28. Sharma, RK, Wang JH. Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci USA 82:2603–2607, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Sharma RK, Wang JH. Regulation of 63 kD subunit containing isozyme of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase by a calmodulin-dependent protein kinase. J Biol Chem 261:1322–1328, 1986.

    PubMed  CAS  Google Scholar 

  30. Sharma RK, Wang JH. Regulation of cAMP Concentration by CaM-dependent cyclic nucleotide phosphodiesterase. Biochem Cell Biol 64:1072–1080, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Weber K, Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412, 1969.

    PubMed  CAS  Google Scholar 

  32. Laemmli UK. Cleavage of stuctural proteins during the assembly of the head of bacterio-phage T4. Nature 227:680–685, 1970.

    Article  PubMed  CAS  Google Scholar 

  33. Cleveland DW, Fischer SG, Krischner MW, Laemmli UK. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252:1102–1106, 1977.

    PubMed  CAS  Google Scholar 

  34. Klee CB, Crouch TH, Krinks MH. Subunit structure and catalytic properties of bovine brain Ca2+-dependent cyclic nucleotide phosphodiesterase. Biochemistry 18:722–729, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Klee CB, Vanaman TC. Calmodulin. Adv Prot Chem 35:213–321, 1982.

    Article  CAS  Google Scholar 

  36. Keravis TM, Duemler BH, Wells JM. Calmodulin sensitive phosphodiesterase of porcine cerebral cortex: Kinetic behavior, calmodulin activation, and stability. J Cyclic Nucleotide Protein Phosphor Res 11:365–372, 1986.

    PubMed  CAS  Google Scholar 

  37. Wu Z, Sharma RK, Wang JH. Catalytic and regulatory properties of CaM-stimulated phosphodiesterase isozyme. Adv Second Messenger Phosphoprotein Res 25:29–43, 1992.

    PubMed  CAS  Google Scholar 

  38. Sharma RK, Kalra J. Ginsenosides are potent and selective inhibitors of some calmodulin-dependent phosphodiesterase isozymes. Biochemistry 32:4975–4978, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Sharma RK, Wang JH. Preparation and assay of the Ca2+ dependent modulator protein. Adv Cyclic Nucleotide Res 10:187–198, 1979.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, R.K., Kalra, J., Tan, Y. (1995). Differential Regulation of Calmodulin-Dependent Cyclic Nucleotide Phosphodiesterase Isozymes. In: Singal, P.K., Dixon, I.M.C., Beamish, R.E., Dhalla, N.S. (eds) Mechanisms of Heart Failure. Developments in Cardiovascular Medicine, vol 167. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2003-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2003-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5827-5

  • Online ISBN: 978-1-4615-2003-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics