Skip to main content

Molecular Basis of Cell Cycle Dependent HIV-1 Replication

Implications for Control of Virus Burden

  • Chapter
Book cover Cell Activation and Apoptosis in HIV Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 374))

Abstract

Retroviruses show a strong cell cycle dependence for productive infection. For example, the onco-retrovirus murine leukaemia virus (MLV) requires proliferating host cells for productive infection (Temin, 1988; Varmus and Brown, 1989). This restriction appears to reflect an inability of viral DNA to localize to the host cell nucleus until the host cell enters mitosis (Roe, et al., 1993; Lewis, 1994 and Emerman, 1994). This dependence of onco-retroviruses for dividing cells is further illustrated by the poor transduction capacities of onco-retrovirus based retroviral vectors in non-dividing cell systems in vitro (miller, et al., 1990; Springett, et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beca-Regen L, Heinzinger N, Stevenson M, and Gendelman HE. Interferon-alpha induced antiretroviral activities: restriction of viral nuclear acid synthesis and progeny virion production in HIV-1-infected monocytes. J Virol (submitted).

    Google Scholar 

  • Bowerman B, Brown PO, Bishop JM, and Varmus HE. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev, 3:469–478, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Brown PO, Bowerman B, Varmus HE, and Bishop JM. Correct integration of retroviral DNA in vitro. Cell, 49:347–356, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Stanwick TL, Dempsey MP; and Stevenson M. Quiescent T lymphocytes as an inducble virus reservoir in HIV-1 infection. Science, 254:423–427, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, and Bukrinskaya AG, Haggerty S, and Stevenson M. Active nuclear import of human immunododeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci USA, 89:6580–6584, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, and Stevenson. Association of integase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA, 90:6125–6129, 1993a.

    Article  CAS  Google Scholar 

  • Bukrinsky M, Haggerty S, Dempsey MP, Sharova N, Adzhubei A, Spitz L, Lewis P, Goldfarb D, Emerman M, and Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature, 365:666–669, 1993b.

    Article  CAS  Google Scholar 

  • Collin M, and Gordon S. The kinetics of human immunodeficiency virus reverse transcription are slower in primary human macrophages than in a lymphoid cell line. Virology, 200:114–120, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, and Laskey R. The nuclear membrane. Science, 258:942–947, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, and Bernstein A. Retrovirus vectors containing an internal attachment site: evidence that circles are not intermediates to murine retrovirus integration. J Virol, 63:2844–2846, 1989.

    PubMed  CAS  Google Scholar 

  • Ellison V, Abrams H, Roe T, Lifson J, and Brown P. Human immunodeficiency virus integration in a cell-free system. J Virol, 64:2711–2715, 1990.

    PubMed  CAS  Google Scholar 

  • Emerman M, Bukrinsky MI, and Stevenson M. HIV-1 infection of non-dividing cells. (letter) Nature, 369:108, 1994.

    Article  Google Scholar 

  • Farnet CM, and Hasetine WA. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol, 65:1910–1915, 1991.

    PubMed  CAS  Google Scholar 

  • Fultz PN, Gluckman JC, Muchmore E, and Girard M. Transient increased in numbers of infectious cells in an HIV-infected chimpanzee following immune stimulation. AIDS Res Human Retrov, 8:313–317, 1992.

    Article  CAS  Google Scholar 

  • Gao W, Cara A, Gallo RC, and Lori F. Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci USA, 90:8925–8928, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, and Popvic M. The role of mononuclear phagocytes in HTLV IIULAV infection. Science, 233:215–219, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Heinzinger NK, Bukrinsky MI, Haggerty SA, Ragland AM, Kelwalranami V, Lee MA, Gendelman HE, Ratner L, Stevenson M, and Emerman M. The Vpr protein of HIV-1 influences nuclear localization of viral nucleic acids in non-dividing host cells. Proc Natl Acad Sci USA (in press).

    Google Scholar 

  • Janoff EN, Douglas JM, Gabriel M, Blaser MJ, Davidson AJ, Kohn DL, and Judson FN. Class-specific antibody response to pneumococcal capsular polysaccharide in men infected with immunodeficiency virus type 1. J Infect Dis, 158:983–990, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Karageorgos L, Li P, and Burrell C. Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Human Retroviruses, 9:817–823, 1993.

    Article  CAS  Google Scholar 

  • Kimpton J, and Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated B-galactosidase gene. J Virol, 66:2232–2239, 1992.

    PubMed  CAS  Google Scholar 

  • Knight SC, and Patterson S. Effect of human immunodeficiency virus on dendritic cells isolated from human peripheral blood. In: Proceedings of Tenth Histocompatibility Workshop, B DuPont (ed.), Springer Verlag, New York, 1990:p378.

    Google Scholar 

  • Koenig S, Gendelman HE, Orenstein JM, DalCanto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, and Fauci AS. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science, 233:1089–1093, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi Y, O’Brien WA, Zhao JQ, Golde DW, Gasson JC, and IS-Y C. Cytokines after production of HIV-1 from primary mononuclear phagocytes. Science, 241:1673–1675, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Langhoff E, Terwilliger EF, Bos HJ, Kalland KH, Poznansky MC, Bacon OML, and Haseltine WA. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures. Proc Natl Acad Sci USA, 88:7998–8002, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lewis P, Hensel M, and Emerman M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J, 11:3053–3058, 1992.

    PubMed  CAS  Google Scholar 

  • Lewis P, Hensel M. Passage through mitosis is required for oncoretroviruses but not for the human ummunodeficiency virus. J Virol, 68:510–516, 1994.

    PubMed  CAS  Google Scholar 

  • Lobel LI, Murphy JE, and Goff SP. The palindromic LTR-LTR junction of Moloney murine leukemia virus is not an effecient substrate for proviral integration. J Virol, 63:2629–2637, 1989.

    PubMed  CAS  Google Scholar 

  • Lu YL. Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol, 67:6542–6550, 1993.

    PubMed  CAS  Google Scholar 

  • Maul GG. The nuclear and the cytoplasmic proe complex: Structure, dynamics, distribution and evolution. International Review Cytology Supplement, 6:75–187, 1977.

    CAS  Google Scholar 

  • McDougal JS, Mawle A, Cort SP, Nicholson JKA, Cross GD. Scheppler-Campbell JA, Hicks D, and Sligh J. Cellular tropism of the human retrovirus HTLV-III/LAV I. Role of T cell activation and expression of the T4 antigen. J Immunol, 135:3151–3162, 1985.

    PubMed  CAS  Google Scholar 

  • Miller DG, Adam MA, and Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol, 10;4239–4242, 1990.

    PubMed  CAS  Google Scholar 

  • Newmeyer DD, and Forbes DJ. Nuclear import can be separated into distinct steps in vitro: Nuclear pore binding and translocation. Cell, 52:642–653, 1988.

    Article  Google Scholar 

  • Nicholson JKA, Cross GD, Gallaway CS, and McDougal JS. In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-associated virus (HTLV III/LAV). J Immunol, 137:323–329, 1986.

    PubMed  CAS  Google Scholar 

  • O’Brien WA, Namazi A, Kalhor H, Mae SH, Zack JA, and Chen IS. Kinetics of human immunodeficiency virus type 1 reverse transcription in blood mononuclear phagocytes are slowed by limitations of nucleotide precursors. J Virol, 68:1258–1263, 1994.

    PubMed  Google Scholar 

  • Peden K, Emerman M, and Montagnier L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1 LAI, HIV-1 MAL, and HIV-1 EL1. Virology, 185:661–672, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Pedrali-Noy G, Spadari S, Miller-Faures A, Miller AO, Kruppa J, and Koch G. Synchronization of HeLa cell cultures by inhibition of DNA polymerase with aphidicolin. Nuc Acids Res, 8:377–387, 1980.

    Article  CAS  Google Scholar 

  • Piatak M, Saag MS, Yang LC, Clark SJ, Kappes JC, Luk KC, Hahn BH, Shaw GM, and Lifson JD. Hugh levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science, 259:1749–1754, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Popv J, McGrw T, Hofmann B, Vowels B, Shum A, Nishanian P, and Fahey JL. Acute lymphoid changes and ongoing immune activation in SIV infection. J AIDS, 5:391–399, 1992.

    Google Scholar 

  • Redd SC, Rutherford GW, Sanda MA, Lithson AR, Hadley WK, Facklam RR, and Spika JS. The role of human immunodeficiency virus infection in pneumococcal bacteremia in San Francisco residents. J Infect Dis, 162:1012–1017, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Richardson WD, Mills AD, Dilworth SM, Laskey RA, and Dingwall C. Nuclear protein migration involves two steps: Rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell, 52:655–664, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Roe T, Reynolds TC, Yu G, and Brown PO. Integration of murine leukemia virus DNA depends on mitosis. EMBO J, 12:2099–2108, 1993.

    PubMed  CAS  Google Scholar 

  • Rosenberg ZF, and Fauci AS. The immunophathogenesis of HIV infection. Adv Immunol, 47:377–431, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Shaw GM, Harper ME, Hahn BH, Epstein LG, Gajdusek DC, Price RW, Navia BA, Petito CD, O’Hara CJ, Groopman JE, Cho ES, Oleske JM, Wong-Staal F, and Gallo RC. HTLV III infection in brains of children and adults with AIDS encephalopathy. Science, 227:177–182, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Springett GM, Moen RC, Anderson S, Blaese RM, and Anderson WF. Infection efficiency of T lymphocytes with amphotropic retroviral vectors is cell cycle dependent. J Virol, 63:3865–3869, 1989.

    PubMed  CAS  Google Scholar 

  • Stevenson M, Haggerty S, Lamonica C, Mann AM, Meier C, and Wasiak A. Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis. J Virol, 64:3792–3803, 1990.

    PubMed  CAS  Google Scholar 

  • Temin HM, Mechanisms of cell killing/cytopathic effects by nonhuman retroviruses. Rev Infect Dis, 10:399–405, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Varmus H and Brown P. Retroviruses. In: Mobile DNA, DE Berg and MM Howe (Eds), American Society for Microbiology, Washington, DC, 1989:p53–108.

    Google Scholar 

  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts BJ, Michaels F, Kufta CV, and Dubois-Dalcq M. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science, 249:549–553, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg JB, Mathews TJ, Cullen BR, and Malim MR Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med, 174, 1477–1482, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Westervelt P, Trowbridge DB, Epstein LG, Blumberg BM, Li Y, Hahn BH, Shaw GM, Price RW, and Ratner L. Macrophage tropism determinants of human immunodeficiency virus type 1 in vivo. J Virol, 66:2577–2582, 1992.

    PubMed  CAS  Google Scholar 

  • Wiley CA, Schrier RD, Nelson JA, Lampert PW, and Oldstone MBA. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA, 83:7089–7093, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Cann AJ, Lugo JP, and Chen ISY. HIV-1 production from infected peripheral blood T cells after HTLV 1 induced mitogenic stimulation. Science, 240:1026–1029, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, and Chen ISY. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell, 61:213–222, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, and Chen ISY. Control of expression and cell tropism of human immunodeficiency virus type 1. Adv Vir Res, 38:125–146, 1993.

    Article  Google Scholar 

  • Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, and Gallo RC. Long term cultures of HTLVIII-infected T cells: a model of cyopathology of T-cell depletion in AIDS. Science, 231:850–853, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stevenson, M. et al. (1995). Molecular Basis of Cell Cycle Dependent HIV-1 Replication. In: Andrieu, JM., Lu, W. (eds) Cell Activation and Apoptosis in HIV Infection. Advances in Experimental Medicine and Biology, vol 374. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1995-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1995-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5823-7

  • Online ISBN: 978-1-4615-1995-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics