Autoimmunity, Apoptosis Defects and Retroviruses

  • J. D. Mountz
  • J. Cheng
  • X. Su
  • J. Wu
  • T. Zhou
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 374)


Autoimmune disease in both mice and humans is associated with increased expression of endogenous retroviruses in the thymus and T cells, and loss of self-tolerance by T cells. The basic genetic defect underlying autoimmune disease has been identified as a mutation of the Fas apoptosis antigen in MRL-lpr/lpr mice or a mutation of the Fas ligand in C3H-gld/gld mice. In MRL-lpr/lpr mice, the lpr mutation results from a 5.3 kb insertion of the ETn retrotransposon in the second intron of the Fas gene. In contrast to normal mice, which express a 2.2 kb normal size Fas cDNA, MRL-lpr/lpr mice express multiple Fas RNA transcripts ranging from 2-10.5 kb. In addition, a 5.7 kb full-length ETn transcript is highly expressed in the thymus of younger MRL-lpr/lpr mice. To determine if high ETn expression was dependent on abnormal Fas expression, CD2-fas transgenic mice were produced using the full-length murine Fas cDNA under the regulation of the CD2 promoter and enhancer. This resulted in normalization of Fas expression and also elimination of expression of the ETn retrotransposon. The ETn regulatory sequence contains potential DNA binding sites found in the enhancers of many genes activated during early T cell development in the thymus including enhancer regions for the TCR, CD3 and IL-2 genes. Therefore we propose that ETn expression is increased during early T cell development in the thymus, or after T cell activation, and that the integration of ETn in the Fas apoptosis gene leads to abnormal T cell apoptosis or development.

Human autoimmune disease has also been found to result from production of a soluble inhibitor of apoptosis. The full-length cDNA and genomic clones for human Fas were cloned and sequenced. Patients with SLE produced high levels of an alternatively spliced soluble Fas (sFas) RNA lacking the transmembrane (exon 6) resulting in high circulating levels of the Fas molecule. This human sFas molecule was able to inhibit apoptosis in vitro at levels found in serum of SLE patients (200 ng/ml). The same levels of mouse sFas were able to inhibit apoptosis in vivo in mice resulting in a 3-fold increase in spleen size, and altered thymocyte maturation consisting of increased production of CD4-CD8- T cells and decreased CD4+CD8+ T cells. Regulation of Fas signaling in human T cells also plays a role in abnormal apoptosis. Fas signaling is mediated by the hematopoietic stem cell phosphatase, (Hcph) and is inhibited in the Hcph deficient Molt-4 T cell, the phosphatase deficient motheaten (me/me) mice and by the tyrosine phosphatase inhibitor pervanadate. Multiple pathways of Fas apoptosis were also shown to exist, as Fas induced apoptosis is increased in the liver of me/me mice, and signaling likely also involves an sphingomylinaseceramide activated kinase pathway as utilized by the TNF-R.

Fas ligand has been recently cloned in mice and humans, and is homologous to TNF-a. The Fas ligand defect in autoimmune C3H-gld/gld mice is due to a point mutation resulting in a single amino acid change in the hydrophobic region of the Fas ligand trimer. These results indicate that T cell apoptosis can be dramatically increased or decreased by cellular interactions which in turn regulate either the levels of production or signaling activity of the Fas and Fas ligand. Retroviruses and their products can influence apoptosis by altering expression of Fas or Fas-L, or altering apoptotic signaling after Fas/Fas-L interactions. Further insights into the regulation of apoptosis molecules will be important in normalizing this activity when it is decreased as in the case of autoimmune disease, or when it is in excess, as is the case with HIV disease.


Systemic Lupus Erythema Patient Apoptosis Defect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krieg, A. M., Gause, W. C., Gourley, M. F. and Steinberg, A. D. 1989. A role for endogenous retroviral sequences in the regulation of lymphocyte activation. J. Immunol. 143:2448–2451.PubMedGoogle Scholar
  2. 2.
    Kreig, A. M., Gourley, M. F. and Steinberg, A. D. 1991. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell. J. Immunol. 146:3002–3006.Google Scholar
  3. 3.
    Gourley, M. F., Kisch, W. J., Mojcik, C. F., King, L. B., Krieg, A. M. and Steinberg, A. D. 1992. Molecular aspects of system lupus erythematosus: murine endogenous retroviral expression. Cell Biol. 11:253–264.Google Scholar
  4. 4.
    Hebebrand, L. C., Olsen, R. G., Mathes, L. E. and Nichols, W. S. 1979. Inhibition of human lymphocyte mitogen and antigen response by a 15,000 dalton protein from feline leukemia virus. Cancer Res. 39:443–447.PubMedGoogle Scholar
  5. 5.
    Orosz, C. G., Zinn, N E, Olsen, R. G. and Mathes, L. E. 1985. Retrovirus-mediated immunosuppression II. FeLV UV alters in vitro murine T lymphocyte behavior by reversibly impairing lymphokine secretion. J. Immunol. 135:583–590.PubMedGoogle Scholar
  6. 6.
    Cianciolo, G. J., Matthews, T. J., Bologneis, D. P. and Snyderman, R. 1980. Macrophage accumulation in mice is inhibited low molecular weight products from murine leukemia viruses. J. Immunol. 124:2900–2905.PubMedGoogle Scholar
  7. 7.
    Schmidt, D. M., Sidhu, N. K., Cianciolo, G. J. and Snyderman, R. 1987. Recombinant hydrophilic region of murine retroviral protein pl5E inhibits stimulated T-lymphocyte proliferation. Proc. Natl. Acad. Sci, USA. 84:7290–7294.PubMedCrossRefGoogle Scholar
  8. 8.
    Ruegg, C. L., Monell, C. R. and Strand, M. 1989. Identification, using synthetic peptides, of the minimum amino acid sequence from the retroviral transmembrane protein p 15E required for inhibition of lymphoproliferation and its similarity to gp21 of human T-lymphotrophic virus types I and II. J. Virol. 63:3250–3256.PubMedGoogle Scholar
  9. 9.
    Cianciolo, G. J., Copeland, T. D., Oroszlan, S. and Snyderman, R. 1985 Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230:453–455.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris, D. T., Cianciolo, G. J., Snyderman, R., Argov, S. and Koren, H. S. 1987. Inhibition of human natural killer cell activity by a synthetic peptide homologous to a conserved region in the retroviral protein, p 15E. J. Immunol. 138:889–894.PubMedGoogle Scholar
  11. 11.
    Gottlieb, R. A., Lennarz, W. J., Knowles, R. D., Cianciolo, G. J., Dinarello, C. A., Lachman, L. B. and Kleinerman, E. S. 1989. Synthetic peptide corresponding to a conserved domain of the retroviral protein pl5E blocks IL-1-mediated signal transduction. J. Immunol. 142:4321–4328.PubMedGoogle Scholar
  12. 12.
    Cianciolo, G. J., Bogerd, H. and Snyderman, R. 1988. Human retrovirus-related synthetic peptides inhibit T Iymphocyte proliferation. Immunol. Letters 19:7–14.CrossRefGoogle Scholar
  13. 13.
    Ruegg, C. L., Monell, C. R. and Strand, M. 1989. Inhibition ofLymphoproliferation by a synthetic peptide with sequence identity to gp41 of human immunodeficiency virus type I. J. Virol. 63:3257–3260.PubMedGoogle Scholar
  14. 14.
    Chattopadhyay, S. K., Morse, III H. C., Makino, M., Ruscetti, S. K. and Hartley, J. W. 1989. Defective virus is associated with induction of murine retrovirus-induced immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 86:3862–3866.PubMedCrossRefGoogle Scholar
  15. 15.
    Siekevitz, M., Feinberg, M. B., Holbrook, N., Wong-Staal, F. and Greene, W. C. 1987. Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus type I. Proc. Nad. Acad. Sci., USA 84:5389–5393.CrossRefGoogle Scholar
  16. 16.
    Leung, K. and Nabel, G. J. 1988. HTLV-I transactivator induces interleukin-2 receptor expression through an NF-KB-like factor. Nature 333: 776–778.PubMedCrossRefGoogle Scholar
  17. 17.
    Green, J. E., Hinrichs, S. H., Vogel, J. and Jay, G. 1989. Exocrinopathy resembling Sjogren’s syndrome in HTLV-I tax transgenic mice. Nature 341:72–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson, L. D., Flyer, D. C. and Faller, D. V. 1987. Murine retroviruses control class I major histocompatibility antigen gene expression via a trans effect at the transcriptional level. Mol. Cell Biol. 7:2406–2415.PubMedGoogle Scholar
  19. 19.
    Merulo, D., Nimelstein, S. H., Jones, P. P., Lieberman, M. and McDevitt, H. O. 1978. Increased synthesis and expression of H-2 antigens on thymocytes as a result of radiation leukemia virus infection: a possible mechanism for H-2 linked control of virus-induced neoplasia. J. Exp. Med. 147:470–487.CrossRefGoogle Scholar
  20. 20.
    Wettstein, P. J., Colombo, M. P. and Jaenisch, R. 1988. Non-H-2 histocompatibility antigens encoded by Moloney-murine leukemia virus in MOV mouse strains are detectable by skin grafting and cytolytic T lymphocytes. J. Immunol. 140:4337–4341.PubMedGoogle Scholar
  21. 21.
    Plotz, P. H. 1983. Autoantibodies are anti-idiotype antibodies to antiviral antibodies. Lancet ii:824–826.CrossRefGoogle Scholar
  22. 22.
    Gaulton, G. N. and Greene, M. I. 1989. Inhibition of cellular DNA synthesis by retrovirus occurs through a receptor-linked signaling pathway that is mimicked by anti-idiotypic, antireceptor antibody. J. Exp. Med. 169:197–211.PubMedCrossRefGoogle Scholar
  23. 23.
    Query, C. C. and Keene J. D. 1987. A human autoimmune protein associated with U1 RNA contains a region of homology that is cross-reactive with retroviral p30 gag antigen. Cell 51:211–220.PubMedCrossRefGoogle Scholar
  24. 24.
    Golding, H., Robey, F. A., Gates, III F. T., Linder, W., Beining, P. R., Hoffman, T. and Golding, B. 1988. Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II 131 domain. I. Monoclonal antibodies against the gp41-derived peptide and patients’ sera react with native HLA class II antigens, suggesting a role for autoimmunity in the pathogenesis of acquired immune deficiency syndrome. J. Exp. Med. 167:914–923.PubMedCrossRefGoogle Scholar
  25. 25.
    Golding, H., Shearer, G. M., Hillman, K., Luca, P., Manischewitz, J. R., Zajac, A., Clerici, M. M., Gress, R. E., Boswell, R. N. and Golding, B. 1989. Common epitope in human immunodeficiency virus (HIV) I-gp41 and HLA class II elicits immunosuppressive autoantibodies capable of contributing to immune dysfunction in HIV-infected individuals. J. Clin. Invest. 83:1430–1435.PubMedCrossRefGoogle Scholar
  26. 26.
    Maul, G. G., Jimenez, S. A., Riggs, E. and Ziemnicka-Kotula, D. 1989. Determination of an epitope of the diffuse systemic sclerosis marker antigen DNA topoisomerase I-sequence similarity with retroviral p30gag protein suggests a possible cause for autoimmunity in systemic sclerosis. Proc. Natl. Acad. Sci., USA 86:8492–8496.CrossRefGoogle Scholar
  27. 27.
    Fujinami, R. S. and Oldstone, M. B. A. 1985. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230:1043–1045.PubMedCrossRefGoogle Scholar
  28. 28.
    Siliciano, R. F., Lawton, T., Knall, C., Karr, R. W., Berman, P., Gregory, T. and Reinherz E. L. 1988. Analysis of host-virus interactions in AIDS with anti-gp120 T-cell clones: effect of HIV sequence variation and mechanism for CD4+ cell depletion. Cell 54:561–575.PubMedCrossRefGoogle Scholar
  29. 29.
    Adams, T E, Alpert, S. and Hanahan, D. 1987. Non-tolerance and autoantibodies to a transgenic self antigen expressed in pancreatic-ß cells. Nature 325:223–228.PubMedCrossRefGoogle Scholar
  30. 30.
    Leiter, E. H., Fewell, J. W. and Kuff, E. L. 1986. Glucose induces intracisternal type A retroviral gene transcription and translation in pancreatic ß cells. J. Exp. Med. 163:87–100.PubMedCrossRefGoogle Scholar
  31. 31.
    Acha-Orbea, H. and Palmer, E. 1991. Mls-a retrovirus exploits the immune system. Immunol. Today 12:356–361.PubMedCrossRefGoogle Scholar
  32. 32.
    Ambros/Hugin, W. H., Vacchio, M. S. and Morse, H. C., III. 1991. A virus-encoded “superantigen” in a retrovirus-induced immunodeficiency syndrome of mice. Science 252:424–431.CrossRefGoogle Scholar
  33. 33.
    Talal, N., Flescher, E. and Dang, H. 1992. Evidence of possible retroviral involvement in autoimmune disease. Ann. Allergy 69:1–4.Google Scholar
  34. 34.
    Talal, N., Garry, R. F., Schur, P. H., Alexander, S., Dauphinee, M. J., Livas, I. H., Ballester, A., Takei, M. and Dang, H. 1990. A conserved idiotype and antibodies to retroviral proteins in systemic lupus erythematosus. J. Clin. Invest. 85:1866–1871.PubMedCrossRefGoogle Scholar
  35. 35.
    H. Dang, Dauphinee, M. J., Talal, N., Garry, R. F. and Alexander, S. 1991. Serum antibodies to retroviral gag in systemic sclerosis. Arth. Rheum. 34:1336–1343.CrossRefGoogle Scholar
  36. 36.
    Talal, N., Dauphine, M. J., Dang, H., Alexander, S., Hart, D. J. and Garry, R.F. 1990. Detection of serum antibodies to, retroviral proteins in patients with primary Sjogrens syndrome (autocrine exocrinopathy). Arth. Rheum. 33:774–781.CrossRefGoogle Scholar
  37. 37.
    DeKeyser, F. S., Hoch, O., Takei, M., Dang, H., DeKeyser, H., Rokeach, C. O. and Talal, N. 1992. Cross-reactivity of BB’ subunit of the Sm ribonucleoprotein autoantigen with proline-rich polypeptides. Clin. Immunol. Immunopathol. 62:285–290.CrossRefGoogle Scholar
  38. 38.
    Yang, J. -N. and Dudley, J. 1992. Endogenous Mtv-8 or a closely linked sequence stimulates rearrangement of the downstream VK9 gene. J. Immunol. 149:1242–1251.PubMedGoogle Scholar
  39. 39.
    Zhu, Z B, Hsieh, S. L., Bentley, D. R., Campbell, R. D. and Volanakis, J. E. 1992. A variable number of tandem repeats locus within the human complement C2 gene is associated with a retrotransposon derived from a human endogenous retrovirus. J. Exp. Med. 175:1783–1787.PubMedCrossRefGoogle Scholar
  40. 40.
    Steinmeyer, K., Klocke, R., Ortland, C., Gronemeier, M., Jockusch, H., Grunder, S. and Jentsch, T. J. 1991. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354:304–308.PubMedCrossRefGoogle Scholar
  41. 41.
    Baughman, G., Harrigan, M. T., Campbell, N. F., Nurrish, S. J. and Bourgeois, S. 1991. Genes newly identified as regulated by glucocorticoids in murine thymocytes. Mol. Endocrinol. 5:637–644.PubMedCrossRefGoogle Scholar
  42. 42.
    Weiss, S. and Johansson, B. 1989. Integration of the transposon-like element ETn upstream of VA. 2 in the cell line P3X63Ag8. J. Immunol. 143:2384–2391.PubMedGoogle Scholar
  43. 43.
    Shell, B., Szurek, P. and Dunnick, W. 1987. Interruption of two immunoglobulin heavy-chain switch regions in murine plasmacytoma P3.26Bu4 by insertion of retrovirus-like element ETn. Mol. Cell. Biol. 7:1364–1370.PubMedGoogle Scholar
  44. 44.
    Elliott, E., Rathbun, D., Ramsingh, A., Garberi, J. and Flaherty, L. 1989. Genetics and expression of the Q6 and Q8 genes. An LTR-like sequence in the 3’ untranslated region. Immunogenet. 29:371–379.CrossRefGoogle Scholar
  45. 45.
    Cohen, P. L. and Eisenberg R. A. 1991. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferation. Ann. Rev. Immunol. 9:243–269.CrossRefGoogle Scholar
  46. 46.
    Watanabe-Fukunaga, R., Brannan C. I., Copeland, N. G., Jenkins, N. A. and Nagata S. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–318.PubMedCrossRefGoogle Scholar
  47. 47.
    Watson, M. L., Rao, J. K., Gilkeson, G. S., Ruiz, P., Eicher, E. M., Pisetsky, D. S., Matsuzawa, A., Rochelle, J. M. and Seldin, M. F. 1992. Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J. Exp. Med. 176:145–150.CrossRefGoogle Scholar
  48. 48.
    Wu, J., Zhou, T., He, J. and Mountz, J. D. 1993. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. Exp. Med. 178:461–468.PubMedCrossRefGoogle Scholar
  49. 49.
    Greaves, D. R., Wilson, F. D., Lang, G. and Kioussis, D. 1989. Human CD2 3’-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell 56:979–986.PubMedCrossRefGoogle Scholar
  50. 50.
    Wu, J., Zhou, T., Zhang, J., He, J., Gause, W. C. and Mountz, J. D. 1994. Correction of accelerated autoimmune disease by early replacement of the mutated 1pr gene with the normal fas apoptosis gene in the T cells of transgenic MRL-lpr/lpr mice. Proc. Natl. Acad. Sci., USA 91:2344–2348.PubMedCrossRefGoogle Scholar
  51. 51.
    Mountz, J. D., Zhou, T., Eldridge, J., Berry, K. and Blüthmann, H. 1990. Transgenic rearranged T-cell receptor gene inhibits lymphadenopathy and accumulation of CD4-CD8-CD8-B220+ T cells in MRLIpr/lpr mice. J. Exp. Med. 172:1805–1817.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou, T., Blüthmann, H., Eldridge, J., Berry, K. and Mountz, J. D. 1993. Origin of CD4-CD8-B220+ T cells in MRL-1pr/lpr mice: clues from a TCR ß mouse. J. Immunol. 150:3651–3667.PubMedGoogle Scholar
  53. 53.
    Huesmann, M., Scott, B., Kisielow, P. and von Boehmer, H. 1991. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66:533–539.PubMedCrossRefGoogle Scholar
  54. 54.
    Teh, H. S., Kishi, H., Scott, B., Borgulya, P., von Boehmer, H. and Kisielow, P. 1992. Early deletion and late positive selection of T cells expressing a male-specific receptor in T-cell receptor transgenic mice. Dey. Immunol. 1:1–22.CrossRefGoogle Scholar
  55. 55.
    Uematsu, Y., Ryser, S., Dembic, Z., Borgulya, P., Krimpenfort, P., Berns, A., von Boehmer, H. and Steinmetz, H. 1988. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 52:831–837.PubMedCrossRefGoogle Scholar
  56. 56.
    Thompson, C. B., Wang, C. Y., Ho, I. C., Bohjanen, P. R., Petryniak, B., June, C. H., Miesfeldt, S., Zhang, L., Nabel, G. J. and Karpinski, B. 1992. cis-acting sequences required for inducible interleukin-2 enhancer function bind a novel Ets-related protein, Elf-1. Mol. Cell. Biol. 12:1043–1056.PubMedGoogle Scholar
  57. 57.
    Wang, C. Y., Petryniak, B., Ho, I. C., Thompson, C. B. and Deiden, J. M. 1992. Evolutionarily conserved Ets family members display distinct DNA binding specificities. J. Exp. Med. 175:1391–1398.PubMedCrossRefGoogle Scholar
  58. 58.
    Leiden, J. M, Wang, C. Y., Petryniak, B., Markovitz, D. M., Nabel, G. J. and Thompson, C. B. 1992. A novel Cts-related transcription factor, Elf-1, binds to human immunodeficiency virus type 2 regulatory elements that are required for inducible transactivation in T cells. J Virol 66:5890–5994.PubMedGoogle Scholar
  59. 59.
    Bosselut, R., Duvall, J. F., Gegonne, A., Bailly, M., Hemar, A., Brady, J. and Ghysdael, J. 1990. The product of the c-ets-1 proto-oncogene and the related Ets2 protein act as transcriptional activators of the long terminal repeat of human T cell leukemia virus HTLV-1. EMBO J 9:3137–3149.PubMedGoogle Scholar
  60. 60.
    Itoh, N., Yonehara, S., Ishii, A, Yonehara, M., Mizushima, S.I., Sameshima, M., Hase, A., Seto, Y. and Nagata, S. 1991. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243.PubMedCrossRefGoogle Scholar
  61. 61.
    Fernandez-Botran, R. 1991. Soluble cytokine receptors: their role in immunoregulation. FASEB J. 5:2567–2574.PubMedGoogle Scholar
  62. 62.
    Josimovic-Alasevic, O., Herrmann, T. and Diamantstein, T. 1988. Demonstrations of two distinct forms of released low-affmity type interleukin 2 receptors. Eur. J. Immunol. 18:1855–1857.PubMedCrossRefGoogle Scholar
  63. 63.
    Schall, T. J., Lewis, M., Koller, K. J., Lee, A., Rice, G. C., Wong, G. W. H., Gatanaga, T., Granger, G. A., Lentz, R., Raab, H., Kohr, W. J. and Goeddel, D. V. 1990. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61:361–370.PubMedCrossRefGoogle Scholar
  64. 64.
    Mosley, B., Beckmann, M. P., March, C. J., Idzerda, R. L., Gimpel, S. D., VandenBos, T., Friend, D., Alper, A., Anderson, D., Jackson, J., Wignall, J. M., Smith, C., Gallis, B., Sims, J. E., Urdal, D., Widmer, M. B. and Park, L. S. 1989. The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms. Cell 59:335–348.PubMedCrossRefGoogle Scholar
  65. 65.
    Goodwin, R. G., Friend, D., Ziegler, S. F., Jerzy, R., Falk, B. A., Gompel, S., Cosman, D., Dower, S. K., March, C. J., Namen, A. E. and Park, L. S. 1990. Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor superfamily. Cell 60:941–951.PubMedCrossRefGoogle Scholar
  66. 66.
    Itoh, N. and Nagata, S. 1993. Anovel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J. Biol. Chem. 268:10932–10937.PubMedGoogle Scholar
  67. 67.
    Cheng, J., Zhou, T., Liu, C., Shapiro, J. P., Brauer, M. J., Kiefer, M. C., Barr, P. J. and Mountz, J. D. 1994. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759–1762.PubMedCrossRefGoogle Scholar
  68. 68.
    Krowka, J. F., Cuevas, B., Ascher, M. S. and Sheppard, H. W. 1994. Increased soluble Fas in AIDS. J. Immunol., submitted for publication.Google Scholar
  69. 69.
    Suda, T., Takahashi, T., Golstein, P. and Nagata, S. 1993. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169–1178.PubMedCrossRefGoogle Scholar
  70. 70.
    Takahashi, T., Tanaka, M., Brannan, C. I., Jenkins, N. A., Copeland, N. G., Suda, T. and Nagata, S. 1994. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–976.PubMedCrossRefGoogle Scholar
  71. 71.
    Suda, T. and Nagata, S. 1994. Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med. 179:873–879.PubMedCrossRefGoogle Scholar
  72. 72.
    Trauth, B. C., Klas, C., Peters, A. M. J., Matzuku, S., Moller, P., Falk, W., Debatin, K. -M. and Krammer, P. H. 1989. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science (Wash. DC). 245:301–312.PubMedCrossRefGoogle Scholar
  73. 73.
    Yonehara, S., Ishii, A. and Yonehara, M. 1989. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169:1747–1753.PubMedCrossRefGoogle Scholar
  74. 74.
    Su, X., Zhou, T., Wu, J., Jope, R. and Mountz, J. D. 1994. Dephosphorylation of a 65 Kd protein associated with a signal for Fas mediated apoptosis. J. Immunol. 152:A3004.Google Scholar
  75. 75.
    Pumiglia, K. M., Lau, L., Huang, C., Burroughs, S. and Feinstein, M. B. 1992. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). Biochem. J. 286:441–450.PubMedGoogle Scholar
  76. 76.
    Oehm, A., Behrmann, I., Falk, W., Pawlita, M., Maier, G., Klas, C., Li-Weber, M., Richards, S., Dhein, J., Trauth, B. C., Ponstingl, H. and Krammer, P. H. 1989. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor family. J. Biol. Chem. 267:10709–10714.Google Scholar
  77. 77.
    Kolesnick, R. and Golde, D. W. 1994. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77:325–327.PubMedCrossRefGoogle Scholar
  78. 78.
    Mathias, S., Dressler, K. A. and Kolesnick, R. N. 1991. Characterization of a ceramide-activated protein kinase-stimulation by tumor necrosis factor a. Proc. Natl. Acad. Sci. USA. 88:10009–10014.PubMedCrossRefGoogle Scholar
  79. 79.
    Ballou, L. R. 1992. Spingolipids and cell function. Immunol. Today 13:339–342.PubMedCrossRefGoogle Scholar
  80. 80.
    Alderson, M. R., Armitage, R. J., Maraskovsky, E., Tough, T. W., Roux, E., Schooley, K., Ramsdell, F. and Lynch, D.H. 1993. Fas transduces activation signals in normal human T lymphocytes. J. Exp. Med. 178:2231–2238.PubMedCrossRefGoogle Scholar
  81. 81.
    Gougeon, M. L., Laurent-Crawford, A. G., Hovanessian, A. G. and Montagnier, L. 1993. Direct and indirect mechanisms mediating apoptosis during HIV infection: contribution to in vivo CD4 T cell depletion. Seminars in Immunol. 5:187–194.CrossRefGoogle Scholar
  82. 82.
    Walker, C. M. 1993. Non-cytolytic control of HIV replication by CD8+ T cells. Seminars in Immunol. 5:195–201.CrossRefGoogle Scholar
  83. 83.
    Poli, G. and Fauci, A. S. 1993. Cytokine modulation of HIV expression. Seminars in Immunol. 5:165–173.CrossRefGoogle Scholar
  84. 84.
    Clark, S. J. and Shaw, G. M. 1993. The acute retroviral syndrome and the pathogenesis of HIV-1 infection. Seminars in Immunol. 5:149–155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. D. Mountz
    • 1
  • J. Cheng
    • 1
  • X. Su
    • 1
  • J. Wu
    • 1
  • T. Zhou
    • 1
  1. 1.Department of Medicine Division of Clinical Immunology and Rheumatology and Birmingham Veterans Administration Medical CenterThe University of Alabama at BirminghamBirminghamUSA

Personalised recommendations