Skip to main content

Fatigue Damage Evaluation in Ceramic Matrix Composites

  • Chapter

Abstract

Damage is conventionally defined as the progressive deterioration of materials due to nucleation and growth of microcracks. The purpose of the damage concept [1] is to take into account the microscopic deterioration of the material in its macroscopic constitutive law. In composite materials, the microcracks have a preferential orientation and the damage variable depends on the direction of measurement [2]. Non linear analysis of such materials must consider this anisotropy by introducing a tensorial damage variable in the constitutive equations [3]. The main difficulties when dealing with anisotropic description of damage are to be able to identify the introduced parameters [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Krajcinovic, Mech. Mater. 8, 117–197 (1989).

    Article  Google Scholar 

  2. E.T. Onat and F.A. Leckie, J. Appl. Mech. 55, 1–10 (1988).

    Article  Google Scholar 

  3. R. Talreja, Proc. R. Soc. Lond. A399, 195–216 (1985).

    Google Scholar 

  4. S.S. Wang, E.S.-M. Chim and H. Suemasu, J. Appl. Mech. 53, 347–353 (1986).

    Article  Google Scholar 

  5. P.R. Waynes, J. Issacs and S. Nemat-Nasser, in Review of Progress in QNDE, Vol. 8B, eds D.O. Thompson and D.E. (Plenum, New York, 1989), p. 1827–1833.

    Google Scholar 

  6. R. El Guerjouma and S. Baste, in Ultrasonics International 89, Madrid, July 1989, (Butterworth-Heinemann, 1989), p. 895-900.

    Google Scholar 

  7. J. Roux, B. Hosten, B. Castagnède and M. Deschamps, Rev. Phys. Appl. 20, 351–358 (1985).

    Article  Google Scholar 

  8. S. Baste and B. Hosten, Rev. Phys. Appl. 25, 161–168 (1990).

    Article  Google Scholar 

  9. B. Audoin and S. Baste, in ICCM 8, Honolulu, July 1991, ed. S.W. Tsai and G.S. Springer, (SAMPE, 1991), p. 39-C-1-39-C10.

    Google Scholar 

  10. B. Audoin and S. Baste, J. Appl. Mech 61, 309–316 (1994).

    Article  Google Scholar 

  11. J.M. Jouin, in Matériaux composites pour applications à hautes températures, eds. R. Naslain, J. Lamalle and J.L. Zulian, (AMAC/CODEMAC, Bordeaux, France 1990).

    Google Scholar 

  12. D.B. Marshall and A.G. Evans, J. Am. Ceram. Soc. 68 (1985) 225–231.

    Article  Google Scholar 

  13. I.M. Daniel and A. Charewicz Eng. fract. Mech. 25, 793–808 (1986).

    Article  Google Scholar 

  14. R. Talreja, 1990, in 11 th Ris International Symposium, eds J.J. Bentzen, J.B. Bilde-Srensen, N. Christansen, A. Horsewell and B. Ralph, (Ris: National Laboratory, 1990), p. 145-159.

    Google Scholar 

  15. D. Rouby and P. Reynaud, Comp. Sci. and Techno. 48, 109 (1993).

    Article  Google Scholar 

  16. L.M. Butkus, L.P. Zawada and G.A. Hartman, in AeroMat’ 90, 21–24 May 1990, Long beach, Ca, (1990).

    Google Scholar 

  17. N. Laws, G.J. Dvorak and M. Hejazi, Mech. Mater. 2, 123–137 (1983).

    Article  Google Scholar 

  18. Z.G. Wang, C. Laird, Z. Hashin, B.W. Rosen and C.F. Yen, J. Mater. Sci. 26, 4751–4758 (1991).

    Article  Google Scholar 

  19. B.A. Auld, Acoustic fields in solids, (Wiley-Interscience, New York, 1973), Vol. 1.

    Google Scholar 

  20. B. Castagnède, J.T. Jenkins, W. Sachse and S. Baste, J. Appl. Physics 67, 6, 2753–2761 (1990).

    Article  Google Scholar 

  21. B. Hosten, Ultrasonics 30, 6, 365–371 (1992).

    Article  Google Scholar 

  22. S. Baste and B. Audoin, Eur. J. Mech. A/Solids 10, 6, 587–606 (1991).

    MATH  Google Scholar 

  23. J. Lemaitre and J.L. Chaboche, J. Meca. Appl. 2, 167–189 (1978).

    Google Scholar 

  24. G. Camus, R. El Bouazzaoui, S. Baste and F. Abbe, in World ceramics Congress, Florence, june 29–july 4 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Baste, S. (1995). Fatigue Damage Evaluation in Ceramic Matrix Composites. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1987-4_259

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1987-4_259

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5819-0

  • Online ISBN: 978-1-4615-1987-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics