Fatigue Damage Evaluation in Ceramic Matrix Composites

  • Stéphane Baste


Damage is conventionally defined as the progressive deterioration of materials due to nucleation and growth of microcracks. The purpose of the damage concept [1] is to take into account the microscopic deterioration of the material in its macroscopic constitutive law. In composite materials, the microcracks have a preferential orientation and the damage variable depends on the direction of measurement [2]. Non linear analysis of such materials must consider this anisotropy by introducing a tensorial damage variable in the constitutive equations [3]. The main difficulties when dealing with anisotropic description of damage are to be able to identify the introduced parameters [4].


Fatigue Damage Damage Variable Ceramic Matrix Composite Stiffness Tensor Longitudinal Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Krajcinovic, Mech. Mater. 8, 117–197 (1989).CrossRefGoogle Scholar
  2. 2.
    E.T. Onat and F.A. Leckie, J. Appl. Mech. 55, 1–10 (1988).CrossRefGoogle Scholar
  3. 3.
    R. Talreja, Proc. R. Soc. Lond. A399, 195–216 (1985).Google Scholar
  4. 4.
    S.S. Wang, E.S.-M. Chim and H. Suemasu, J. Appl. Mech. 53, 347–353 (1986).CrossRefGoogle Scholar
  5. 5.
    P.R. Waynes, J. Issacs and S. Nemat-Nasser, in Review of Progress in QNDE, Vol. 8B, eds D.O. Thompson and D.E. (Plenum, New York, 1989), p. 1827–1833.Google Scholar
  6. 6.
    R. El Guerjouma and S. Baste, in Ultrasonics International 89, Madrid, July 1989, (Butterworth-Heinemann, 1989), p. 895-900.Google Scholar
  7. 7.
    J. Roux, B. Hosten, B. Castagnède and M. Deschamps, Rev. Phys. Appl. 20, 351–358 (1985).CrossRefGoogle Scholar
  8. 8.
    S. Baste and B. Hosten, Rev. Phys. Appl. 25, 161–168 (1990).CrossRefGoogle Scholar
  9. 9.
    B. Audoin and S. Baste, in ICCM 8, Honolulu, July 1991, ed. S.W. Tsai and G.S. Springer, (SAMPE, 1991), p. 39-C-1-39-C10.Google Scholar
  10. 10.
    B. Audoin and S. Baste, J. Appl. Mech 61, 309–316 (1994).CrossRefGoogle Scholar
  11. 11.
    J.M. Jouin, in Matériaux composites pour applications à hautes températures, eds. R. Naslain, J. Lamalle and J.L. Zulian, (AMAC/CODEMAC, Bordeaux, France 1990).Google Scholar
  12. 12.
    D.B. Marshall and A.G. Evans, J. Am. Ceram. Soc. 68 (1985) 225–231.CrossRefGoogle Scholar
  13. 13.
    I.M. Daniel and A. Charewicz Eng. fract. Mech. 25, 793–808 (1986).CrossRefGoogle Scholar
  14. 14.
    R. Talreja, 1990, in 11 th Ris International Symposium, eds J.J. Bentzen, J.B. Bilde-Srensen, N. Christansen, A. Horsewell and B. Ralph, (Ris: National Laboratory, 1990), p. 145-159.Google Scholar
  15. 15.
    D. Rouby and P. Reynaud, Comp. Sci. and Techno. 48, 109 (1993).CrossRefGoogle Scholar
  16. 16.
    L.M. Butkus, L.P. Zawada and G.A. Hartman, in AeroMat’ 90, 21–24 May 1990, Long beach, Ca, (1990).Google Scholar
  17. 17.
    N. Laws, G.J. Dvorak and M. Hejazi, Mech. Mater. 2, 123–137 (1983).CrossRefGoogle Scholar
  18. 18.
    Z.G. Wang, C. Laird, Z. Hashin, B.W. Rosen and C.F. Yen, J. Mater. Sci. 26, 4751–4758 (1991).CrossRefGoogle Scholar
  19. 19.
    B.A. Auld, Acoustic fields in solids, (Wiley-Interscience, New York, 1973), Vol. 1.Google Scholar
  20. 20.
    B. Castagnède, J.T. Jenkins, W. Sachse and S. Baste, J. Appl. Physics 67, 6, 2753–2761 (1990).CrossRefGoogle Scholar
  21. 21.
    B. Hosten, Ultrasonics 30, 6, 365–371 (1992).CrossRefGoogle Scholar
  22. 22.
    S. Baste and B. Audoin, Eur. J. Mech. A/Solids 10, 6, 587–606 (1991).MATHGoogle Scholar
  23. 23.
    J. Lemaitre and J.L. Chaboche, J. Meca. Appl. 2, 167–189 (1978).Google Scholar
  24. 24.
    G. Camus, R. El Bouazzaoui, S. Baste and F. Abbe, in World ceramics Congress, Florence, june 29–july 4 (1994).Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Stéphane Baste
    • 1
  1. 1.Laboratoire de Mécanique Physique, URA C.N.R.S. 867Université Bordeaux ITalence cedexFrance

Personalised recommendations