A Numerical Study on Temperature Distribution of Line Heated Anisotropic Carbon Fiber Composites

  • Jussi Varis
  • Jukka Rantala
  • Jari Hartikainen
  • Reijo Lehtiniemi
  • Mauri Luukkala
Chapter

Abstract

Earlier we have described the various uses of infrared line scanner based thermal nondestructive testing equipment [1]. Time constants of measurements made with these kind of equipment are very suitable for testing carbon fiber composites. Scanning a line heat source over a sample surface causes a nonuniform temperature distribution in the sample. In addition to the heat flow normal to the surface, lateral heat flow exists in the surface plane. In the case of carbon fiber composites with a specific oriented structure, the surface temperature distributions depend on the direction where the line source moves. Generally, this is true of any sample having anisotropic thermal conductivity. In oriented carbon fiber composites the bulk thermal conductivity can be considered anisotropic, because the heat transfer in the composite is different in the direction of the fibers compared to perpendicular directions [2,3]. Varis et al. have discussed these phenomenon briefly with the testing of carbon fiber tubes using numerical methods [4]. Here, we represent a more detailed numerical analysis of the effects of line heating on a sample having anisotropic thermal conductivity.

Keywords

Anisotropy Line Source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hartikainen, J. Rantala, R. Lehtiniemi, J. Varis, and M. Luukkala, in Review of Progress in QNDE, Vol. 13, eds. D.O. Thompson and D.E. Chimenti (Plenum Press, New York, 1994), p. 401.Google Scholar
  2. 2.
    P. Cielo, J. Appl. Phys. 56, 230 (1984).CrossRefGoogle Scholar
  3. 3.
    L.J. Inglehart, F. Lepoutre, and F. Charbonnier, J. Appl. Phys. 59, 234 (1986).CrossRefGoogle Scholar
  4. 4.
    J. Varis, J. Rantala, R. Lehtiniemi, J. Hartikainen, and M. Luukkala, in Review of Progress in QNDE, Vol. 13, eds. D.O. Thompson and D.E. Chimenti (Plenum Press, New York, 1994), p. 677.Google Scholar
  5. 5.
    J. Hartikainen, J. Jaarinen, and M. Luukkala, in Review of Progress in QNDE, Vol. 8B, eds. D.O. Thompson and D.E. Chimenti (Plenum Press, New York, 1989), p. 1321.Google Scholar
  6. 6.
    J. Rantala, J. Jaarinen, and J. Hartikainen, Appl. Phys. A 50, 465 (1990).Google Scholar
  7. 7.
    J. Rantala and J Hartikainen, Res. Nondestr. Eval. 3, 125 (1991).Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • Jussi Varis
    • 1
  • Jukka Rantala
    • 2
  • Jari Hartikainen
    • 3
  • Reijo Lehtiniemi
    • 1
  • Mauri Luukkala
    • 1
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Institut für KunststoffprüfungUniversity of StuttgartStuttgartGermany
  3. 3.Finnish Naval HeadquartersHelsinkiFinland

Personalised recommendations