Wave Analysis for the Acoustic Microscope

  • T. Xue
  • W. Lord
  • M. Mina
  • L. Udpa
  • S. Udpa


The acoustic microscope, which utilizes focused ultrasound at hundreds of megahertz or even a few gigahertz, can have comparable wavelength and therefore resolution with the optical microscope since the velocity of ultrasound is five orders lower than that of light in fluid media [1, 2]. Since the appearance of the first acoustic microscope [3], extensive research has been devoted to its applications in the nondestructive testing of materials. With this instrument high contrast micrographs can be obtained which contain unique information not available in other imaging tools and the elastic properties of optically opaque materials can be determined. It is particularly suitable for detecting surface and subsurface defects in metal and ceramic materials and for examining integrated circuits and biological cells.


Wave Front Rayleigh Wave Planar Interface Wave Profile Radial Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. T. Khuri-Yakub, Ultrasonics, 31, (1993) pp 361–72.CrossRefGoogle Scholar
  2. 2.
    A. Briggs, Acoustic Microscopy (Clarendon Press, Oxford, 1992).Google Scholar
  3. 3.
    R. A. Lemons and C. F. Quate, Appl. Phys. Lett., 24, (1974), pp 163–5.CrossRefGoogle Scholar
  4. 4.
    R. D. Welgin and R. G. Wilson, Electron. Lett., 14, (1978), pp 352–4.CrossRefGoogle Scholar
  5. 5.
    C. F. Quate, A. Atalar and H. K. Wickramasinghe, Proc. IEEE, 67, (1979), pp 1092–114.CrossRefGoogle Scholar
  6. 6.
    J. Kushibiki and N. Chubachi, IEEE Trans. SU-32, (1985), pp 189–212.Google Scholar
  7. 7.
    K. Yamanaka, J. Appl. Phys., 54, (1983), pp 4323–9.CrossRefGoogle Scholar
  8. 8.
    K. K. Liang, G.S. Kino and B. Khuri-Yakub, IEEE Trans. SU-32, (1985), pp 213–24.Google Scholar
  9. 9.
    A. Atalar, J. Appl. Phys., 49, (1978), pp 5130–9.CrossRefGoogle Scholar
  10. 10.
    W. Parmon and H. L. Bertoni, Electron. Lett., 15, (1979), pp 684–6.CrossRefGoogle Scholar
  11. 11.
    H. L. Bertoni, IEEE Trans. SU-31, (1984), pp 105–16.Google Scholar
  12. 12.
    J.M.R. Weaver, C. M. W. Daft and G. A. D. Briggs, IEEE Trans. UFFC, 36, (1989), pp 554–60.CrossRefGoogle Scholar
  13. 13.
    R. Ludwig, and W. Lord, IEEE Trans. UFFC, 35, (1988), pp 809–20.CrossRefGoogle Scholar
  14. 14.
    R. Ludwig, and W. Lord, IEEE Trans. UFFC, 36, (1989), pp 342–50.CrossRefGoogle Scholar
  15. 15.
    W. Lord, R. Ludwig and Z. You, J. NDE, 9, (1990), pp 129–43.Google Scholar
  16. 16.
    Z. You, M. Lust, R. Ludwig and W. Lord, IEEE Trans. UFFC 38, (1991), pp 436–45.CrossRefGoogle Scholar
  17. 17.
    B. A. Auld, Acoustic Fields and Waves in Solids (John Wiley & Sons, New York, 1973).Google Scholar

Copyright information

© Plenum Press, New York 1995

Authors and Affiliations

  • T. Xue
    • 1
  • W. Lord
    • 1
  • M. Mina
    • 1
  • L. Udpa
    • 1
  • S. Udpa
    • 1
  1. 1.Department of Electrical Engineering and Computer EngineeringIowa State UniversityAmesUSA

Personalised recommendations