Skip to main content

Presynaptic Gain Control in a Locust Proprioceptor

  • Chapter
Book cover Neural Control of Movement

Summary

A common finding in both vertebrates and invertebrates is that the central terminals of their mechanosensory neurones receive synaptic inputs. These inputs are often caused by neurones that release GABA, and change the chloride conductance which, at the normal resting potential, causes a depolarisation. These inputs in turn reduce the efficacy with which the sensory spikes release transmitter onto postsynaptic neurones. The consequence of this presynaptic inhibition is that the information coded in the spikes of the sensory neurones may not be reliably transmitted to postsynaptic neurones. This paper suggests a new function for some of these presynaptic inputs, from an analysis of proprioceptive afferents in a locust. It proposes that they can form part of an automatic gain control mechanism that limits the efficacy of the proprioceptive signals, when activated by the spikes in other afferents from the same sense organ responding to the same movement. The result is that the actions of one sensory neurone are interpreted by the central nervous system only in the context of the network actions of all the other sensory neurones responding to the same stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernard, J. (1987) Effectiveness of the cercal chordotonal inhibitory organ in the cockroach. Synaptic activity during imposed cercal movements. Comparative Biochemistry and Physiology 87A, 53–56.

    Google Scholar 

  • Blagburn, J.M. and Sattelle, D.B. (1987) Presynaptic depolarization mediates presynaptic inhibition at a synapse between an identified mechanosensory neurone and giant interneurone 3 in the first instar cockroach, Periplaneta americana. Journal of Experimental Biology 127, 135–157.

    Google Scholar 

  • Boyan, G.S. (1988) Presynaptic inhibition of identified wind-sensitive afferents in the cereal system of the locust. Journal of Neuroscience 8, 2748–2757.

    PubMed  CAS  Google Scholar 

  • Burrows, M. (1987) Parallel processing of proprioceptive signals by spiking local interneurones and motor neurones in the locust. Journal of Neuroscience 7, 1064–1080.

    PubMed  CAS  Google Scholar 

  • Burrows, M. (1988) Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ. Journal of Comparative Physiology 164, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, M and Laurent, G. (1993) Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ. Journal of Neuroscience 13, 808–819.

    PubMed  CAS  Google Scholar 

  • Burrows, M., Laurent, G.J. and Field, L.H. (1988) Proprioceptive inputs to nonspiking local interneurones contribute to local reflexes of a locust hindleg. Journal of Neuroscience 8, 3085–3093.

    PubMed  CAS  Google Scholar 

  • Burrows, M. and Matheson, T. (1994) A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor. Journal of Neuroscience 14, 272–282.

    PubMed  CAS  Google Scholar 

  • Cattaert, D., El Manira, A. and Clarac, F. (1992) Direct evidence for presynaptic inhibitory mechanisms in crayfish sensory afferents. Journal of Neurophysiology 67, 610–624.

    PubMed  CAS  Google Scholar 

  • El Manira, A. and Clarac, F. (1991) GABA-mediated presynaptic inhibition in crayfish primary afferents by non-A, non-B-GABA receptors. European Journal of Neuroscience 3, 1208–1218.

    Article  PubMed  Google Scholar 

  • El Manira, A., Cattaert, D., Wallén, P., DiCaprio, R.A. and Clarac, F. (1993) Electrical coupling of mechanoreceptor afferents in the crayfish: a possible mechanism for enhancement of sensory signal transmission. Journal of Neurophysiology 69, 2248–2251.

    PubMed  Google Scholar 

  • El Manira, A., DiCaprio, R.A., Cattaert, D. and Clarac, F. (1991) Monosynaptic interjoint reflexes and their central modulation during fictive locomotion in crayfish. European Journal of Neuroscience 3, 1219–1231.

    Article  PubMed  Google Scholar 

  • Field, L.H. and Burrows, M. (1982) Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. Journal of Experimental Biology 101, 265–285.

    Google Scholar 

  • Field, L.H. and Rind, F.C. (1981) A single insect chordotonal organ mediates inter-and intra-segmental leg reflexes. Comparative Biochemistry and Physiology 68A, 99–102.

    Google Scholar 

  • Foelix, R.F. (1975) Occurrence of synapses in peripheral sensory nerves of Arachnids. Nature, 254, 146–148.

    Article  PubMed  CAS  Google Scholar 

  • Gossard, J-P., Cabelguen, J-M and Rossignol, S. (1990) Phase-dependent modulation of primary afferent depolarization in single cutaneous primary afferents evoked by peripheral stimulation during fictive locomotion in the cat. Brain Research 537, 14–23.

    Article  PubMed  CAS  Google Scholar 

  • Gossard, J-P., Cabelguen, J-M and Rossignol, S. (1991) An intracellular study of muscle primary afferents during fictive locomotion in the cat. Journal of Neurophysiology 65, 914–926.

    PubMed  CAS  Google Scholar 

  • Janig, W., Schmidt, R.F. and Zimmermann, M. (1968) Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Experimental Brain Research 6, 116–129.

    CAS  Google Scholar 

  • Laurent, G. and Burrows, M. (1988) A population of ascending intersegmental interneurones in the locust with mechanosensory inputs from a hind leg. Journal of Comparative Neurology 275, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Matheson, T. (1990) Responses and locations of neurones in the locust metathoracic femoral chordotonal organ. Journal of Comparative Physiology [A] 166, 915–927.

    Google Scholar 

  • Matheson, T. (1992) Range fractionation in the locust metathoracic femoral chordotonal organ. Journal of Comparative Physiology [A] 170, 509–520.

    Google Scholar 

  • Rudomin, P. (1990) Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord. Trends in Neuroscience 13, 499–505.

    Article  CAS  Google Scholar 

  • Schmidt, R.F. (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergebnisse der Physiologie 63, 20–101.

    Article  CAS  Google Scholar 

  • Shanbhag, S.R., Singh, K. and Naresh Singh, R. (1992) Ultrastructure of the femoral chordotonal organs and their novel synaptic organization in the legs of Drosophila melanogaster Meigen (Diptera: Drosophilidae). International Journal of Insect Morphology and Embryology 21, 311–322.

    Article  Google Scholar 

  • Sillar, K.T. and Skorupski, P. (1986) Central input to primary afferent neurones in crayfish, Pacifastacus leniusculus is correlated with rhythmic output of thoracic ganglia. Journal of Neurophysiology 55, 678–688.

    PubMed  CAS  Google Scholar 

  • Watson, A.H.D., Burrows, M. and Leitch, B. (1993) GABA-immunoreactivity in processes presynaptic to the terminals of afferents from a locust leg proprioceptor. Journal of Neurocytology 22, 547–557.

    Article  PubMed  CAS  Google Scholar 

  • Wildman, M.H. and Cannone, AJ. (1991) Interaction between afferent neurones in a crab muscle receptor organ. Brain Research 565, 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Zill, S.N. (1985a) Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ. Journal of Experimental Biology 116, 435–461.

    PubMed  CAS  Google Scholar 

  • Zill, S.N. (1985b) Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. Journal of Experimental Biology 116, 463–480.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burrows, M., Matheson, T., Laurent, G. (1995). Presynaptic Gain Control in a Locust Proprioceptor. In: Ferrell, W.R., Proske, U. (eds) Neural Control of Movement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1985-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1985-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5818-3

  • Online ISBN: 978-1-4615-1985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics