Solubility Measurement of Sodium Iodide in Sodium — Stainless Steel Systems

  • Norihiko Sagawa
  • Shinya Miyahara
  • Tohru Sone


It is highly important in the safety assessment of fast reactors that fission products released from ruptured fuel elements are to be retained in the sodium coolant. Radiological consequences of iodine isotopes are so significant that experimental and theoretical efforts have been put forward for obtaining a better understanding of iodine behavior in the sodium system [1–8]. Any iodide or free iodine released into the sodium is known to be converted to sodium iodide, and its behaviour in the sodium system is essentially controlled by the iodide solubility in sodium. The solubility was measured by Bredig [9,10] at temperatures between 550 – 900 °C and by Allan [11] between 250 – 400 °C, as shown in Fig. 1.


Saturation Temperature Solubility Data Sodium Iodide Liquid Sodium Sodium System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. P. Kunkel, Report NAA-SR-11766 (1966).Google Scholar
  2. 2.
    W. S. Clough, J. Nucl. Energy, 21 (1967) 225–232.CrossRefGoogle Scholar
  3. 3.
    A. W. Castleman and I. N. Tang, Nucl. Sci. Eng., 29 (1967) 159–164.Google Scholar
  4. 4.
    W. P. Kunkel, B. D. Pollock, J. Guon, G. B. Zwetzig, M. Silberberg, and S. Berger, Report AI-AEC-12687 (1968).Google Scholar
  5. 5.
    G. W. Kieholtz and G. C. Battle, Report ORNL-NSIC-37 (1969).Google Scholar
  6. 6.
    A. W. Castleman, Nucl. Safety, 11 (1970) 379–390.Google Scholar
  7. 7.
    H. Feuerstein, A. J. Hooper and F. A. Johnson, Atomic Energy Review, 17 (1979) 697–761.Google Scholar
  8. 8.
    A. W. Thorley, Proc. of IAEA Specialist’s Mtg. on Fission and Corrosion Products Behavior in Primary Circuits of LMFBR’s, Report KfK-4279 (1987) 433-468.Google Scholar
  9. 9.
    M. A. Bredig, J. W. Johnson and W. T. Smith, J. Amer. Chem. Soc., 77 (1955) 307–312.CrossRefGoogle Scholar
  10. 10.
    M. A. Bredig and H. R. Bronstein, J. Phys. Chem., 64 (1960) 64–67.CrossRefGoogle Scholar
  11. 11.
    C. G. Allan, Proc. of BNES Conf. on Liquid Alkali Metals, Nottingham (1973) 159–164.Google Scholar
  12. 12.
    S. Miyahara, N. Sagawa, T. Sone, T. Arakawa and H. Hara, J. Nucl. Sci. Technol., 29 (1992) 351–357.CrossRefGoogle Scholar
  13. 13.
    N. Sagawa, J. Nucl. Sci. Technol., 28 (1991) 305–313.CrossRefGoogle Scholar
  14. 14.
    N. Jordan, Proc. of IAEA Specialist’s Mtg. on Sodium Fires and Prevention (1978) 208-210.Google Scholar
  15. 15.
    N. Sagawa and S. Miyahara, J. Nucl. Sci. Technol., 29 (1992) 427–435.CrossRefGoogle Scholar
  16. 16.
    R. M. Singer, A. H. Fleitman, J. R. Weeks and H. S. Isaacs, Corrosion by Liquid Metals, Plenum Press (1970) 561-576.Google Scholar
  17. 17.
    W. P. Stanaway and R. Tompson, Proc. of 2nd Int. Conf. on Liquid Met. Eng. and Tech., CONF 800401-P2 (1980) 18.54-18.61.Google Scholar
  18. 18.
    C. R. Pellet and R. Tompson, Proc. of 3rd Int. Conf. on Liquid Met. Eng. and Tech., Vol. 3 (1984) 43–48.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Norihiko Sagawa
    • 1
  • Shinya Miyahara
    • 2
  • Tohru Sone
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringIbaraki University HitachiJapan
  2. 2.Oarai Engineering CenterPower Reactor & Nuclear Fuel Development Corp.IbarakiJapan

Personalised recommendations