Quantum Phenomena and Their Applications in Semiconductor Microstructures

  • Federico Capasso
Part of the NATO ASI Series book series (NSSB, volume 347)

Abstract

During the last decade a powerful new approach for designing semiconductor structures with tailored electronic and optical properties, bandgap engineering, has spawned a new generation of semiconductor materials and of electronic and photonic devices.1 Central to bandgap engineering is the notion that by spatially varying the composition and the doping of a semiconductor over distances ranging from a few microns down to ≈ 2.5 Å (≈ 1 monolayer), one can tailor the band structure of a material in a nearly arbitrary and continuous way.1 Thus semiconductor structures with new electronic and optical properties can be custom-designed for specific applications.

Keywords

Coherence GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Capasso and A.Y. Cho, Bandgap engineering of semiconductor heterostructures by molecular beam epitaxy: physics and applications, Surf. Sci. 299/300:878 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    A.Y. Cho, Advances in molecular beam epitaxy (MBE),J. Cryst. Growth 111:1 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    C. Weisbuch and B. Vinter. “Quantum Semiconductor Structures,” Academic Press, San Diego (1991).Google Scholar
  4. 4.
    F. Capasso and S. Datta, Quantum electron devices, Physics Today 43:74 (1990).CrossRefGoogle Scholar
  5. 5.
    F. Capasso, S. Sen, F. Beltram, L. Lunardi, A. Vengurlekar, P.R. Smith, N.J. Shah, R.J. Malik, and A.Y. Cho, Quantum functional devices: resonant tunneling transistors, circuits with reduced complexity and multiple-valued logic, IEEE Trans. Electron. Devices 36:2065 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    F. Beltram, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho, Scattering controlled transmission resonances and negative differential conductance by field induced localization in semiconductor superlattices, Phys. Rev. Lett. 64:3167 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    C. Waschke, H.G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice, Phys. Rev. Lett. 70:3319 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    F. Capasso, K. Mohammed, and A.Y. Cho, Sequential resonant tunneling through a multiquantum well superlattice, Appl. Phys. Lett. 48:478 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    F. Capasso, C. Sirtori, and A.Y. Cho, Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared, IEEE J. Quantum Electron. 30:133 (1994).CrossRefGoogle Scholar
  10. 10.
    F. Capasso, C. Sirtori, J. Faist, D.L. Sivco, S.N.G. Chu, and A.Y. Cho, Observation of an electronic bound state above a potential well, Nature 358:565 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    C. Sirtori, F. Capasso, J. Faist, D.L. Sivco, S.N.G. Chu, and A.Y. Cho, Quantum wells with localized states at energies above the barrier height: a Fabry-Perot electron filter, Appl. Phys. Lett. 61:898 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Quantum cascade laser,Science 264:553 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Quantum cascade laser: an intersubband semiconductor laser operating above liquid nitrogen temperatures, Electron. Lett. 30:865 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    R.F. Kazarinov and R.A. Suris, Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice, Sov. Phys. Semicond. 5:707 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Federico Capasso
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations