Advertisement

Local Signals for Growth Cessation and Differentiation in the Mammary Gland

  • Richard Grosse

Abstract

The mammary gland provides a unique model to study postnatal processes of growth and differentiation. Development of the mouse mammary gland is a complex multistage process, which begins in the embryo with the mammary anlagen giving rise to primary and secondary sprouts. Sparsely branching ducts invade the stroma at puberty, followed by the development of lobuloalveolar structures, and functional differentiation during pregnancy (Topper and Freeman, 1980). By use of endocrine ablation, organ culture systems and various cell culture models, it has been demonstrated that several steroid hormones, prolactin and growth hormone regulate this process (for reviews, see Banerjee and Antoniou, 1985; Streuli and Bissell, 1991). The combined action of aldosterone, prolactin, insulin and cortisol is sufficient to promote lobuloalveolar development and functional differentiation in organ cultures of mammary glands from sexually immature mice, pretreated with estradiol and progesterone (Banerjee et al., 1973). Although the systemic importance of ovarian and pituitary hormones has been well documented, these hormones are virtually incapable of stimulating proliferation or inhibiting growth of mammary epithelial cells (MEC) in vitro.

Keywords

Mammary Gland Mammary Epithelial Cell Functional Differentiation Fatty Acid Binding Protein Mouse Mammary Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banarjee, M., Wood, B. and Kinder, D., 1973, Whole mammary gland organ culture: selection of appropriate gland, In Vitro Cell. Dev. Biol. 9:129.CrossRefGoogle Scholar
  2. Banarjee, M.R. and Antoniou, M., 1985, Steroid and polypeptide hormone interaction in milk protein gene expression, in “Biochemical actions of hormones”, Litwack, G., ed., Academic Press, New York, 237.CrossRefGoogle Scholar
  3. Binas, B., Spitzer, E., Zschiesche, W., Erdmann, B., Kurtz, A., Müller, T., Nieman, C., Blenau, W. and Grosse, R., 1992, Hormonal induction of functional differentiation and mammary derived growth inhibitor expression in cultured mouse mammary gland explants, In Vitro Cell. Dev. Biol. 28A:625.CrossRefGoogle Scholar
  4. Böhmer, F.-D., Lehmann, W., Schmidt, H., Langen, P. and Grosse, R., 1984, Purification of a growth inhibitor for Ehrlich ascites mammary carcinoma cells from bovine mammary gland, Exp. Cell Res. 150:466.PubMedCrossRefGoogle Scholar
  5. Böhmer, F.-D, Kraft, R., Otto, A., Wernstedt, C., Kurtz, A., Müller, T., Rohde, K., Etzold, G., Langen, P., Heldin, C.-H. and Grosse, R., 1987, Identification of a polypeptide growth inhibitor from bovine mammary gland. MDGI sequence homology to fatty acid and retinoid binding proteins, J. Biol. Chem. 262:15137.PubMedGoogle Scholar
  6. Ervin, P., Kaminski, M., Cody, R. and Wicha, M., 1989, Production of mammastatin, a tissue specific growth inhibitor by normal human mammary epithelial cells, Science 244:1585.PubMedCrossRefGoogle Scholar
  7. Glatz, J.F.C., Vork, M., Cistola, D. and van der Vusse, G., 1993, Cytoplasmic fatty acid binding proteins: signficance for intracellular transport of fatty acids and putative role on signal transduction pathways, Prostaglandins Leukotrienes and Essential Fatty Acids 48:33.CrossRefGoogle Scholar
  8. Grosse, R. and Langen, P., 1990, Mammary derived growth inhibitor, in “Handbook of Experimental Pharmacol. 95/II”, Sporn, M. and Roberts, A., eds., Springer Verlag, Heidelberg 249.Google Scholar
  9. Grosse, R., Böhmer, F.-D., Binas, B., Kurtz, A., Spitzer, E., Müller, T. and Zschiesche, W., 1992, Mammary derived growth inhibitor, in “Cancer Treatment and Research Genes Oncogenes and Hormones”, Dickson, R.B. and Lippman, M., eds., Kluwer Academic Press, Boston 69.Google Scholar
  10. Horwitz, K., 1992, The molecular biology of Ru 486. Is there a role for antiprogestins in the treatment of breast cancer? Endoc. Rev. 13:146.Google Scholar
  11. Jhappan, C., Geiser, A., Kordon, E., Bagheri, D., Hennighausen, L., Roberts, A., Smith, G. and Merlino, G., 1993, Targetting of a transforming growth factor ß1 transgene to the pregnant mammary gland inhibits alveolar development, EMBO J. 12:1835.PubMedGoogle Scholar
  12. Knabbe, C., Kopp, A., Jonat, W. and Zugmaier, G., 1994, J. Cell. Biochem. 231 (Abstract Y 115).Google Scholar
  13. Kurtz, A., Vogel, F., Funa, K., Heldin, C.-H. and Grosse, R., 1990, Developmental regulation of mammary derived growth inhibitor expression in bovine mammary tissue, J. Cell Biol. 110:1779.PubMedCrossRefGoogle Scholar
  14. Li, M., Spitzer, E., Zschiesche, W., Binas, B., Parczyk, K. and Grosse, R., 1994, Antiprogestins inhibit growth and stimulate differentiation in the normal mammary gland, J. Cell. Physiol. , in press.Google Scholar
  15. Lupu, R., Colomer R., Kannan, B. and Lippman, M., 1992, Characterization of a growth factor that binds exclusively to the erbB-2 receptor and induces cellular responses, Proc. Natl. Acad. Sci ,USA 89:2287.PubMedCrossRefGoogle Scholar
  16. Mieth, M., Böhmer, F., Ball, R., Groner, B. and Grosse, R., 1990, Transforming growth factor ß inhibits lactogenic hormone induction of ß-casein expression in HC 11 mouse mammary epithelial cells, Growth Factors 4:9.PubMedCrossRefGoogle Scholar
  17. Mueller, T., Kurtz, A. Vogel, F., Breter, H., Schneider, F., Engstroem, U., Mieth, M., Boehmer, D.-D. and Grosse, R., 1989, A mammary derived growth inhibitor (MDGI) related 70kDa antigen identified in nuclei of mammary epithelial cells, J. Cell. Physiol. 138:415.CrossRefGoogle Scholar
  18. Oka, T., Yoshimura, M., Lavandero, S., Wada, K. and Ohba, Y., 1990, Control of growth and differentiation of the mammary gland by growth factors, J. Dairy Sci. 74:2788.CrossRefGoogle Scholar
  19. Peles, E., Bacus, S., Koski, R., Lu, H., Wen, D., Ogden, S., Levy, R. and Yarden, Y., 1992, Isolation of the neu/HER-2 stimulatory ligand: a 44kDa glycoprotein that induces differentiation of mammary tumour cells, Cell 69:205.PubMedCrossRefGoogle Scholar
  20. Pierce jr., D.F., Johnson, M., Matsui, Y., Robinson, S., Gold, L., Purchio, A., Daniel, C., Hogan, B. and Moses, H., 1993, Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-ß1, Genes Dev. 7:2308.PubMedCrossRefGoogle Scholar
  21. Politis, I., Gorewit, R., Müller, T. and Grosse, R., 1992, Mammary derived growth inhibitor in lactation and involution, Domestic Animal Endoc. 9:88.Google Scholar
  22. Robinson, F.D., Roberts, A. and Daniel, C., 1993, TGF-ß suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy, J. Cell Biol. 120:245.PubMedCrossRefGoogle Scholar
  23. Robinson, S., Roberts, A. and Daniel, C., 1993, TGF-ß suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy, J. Cell Biol. 120:245.PubMedCrossRefGoogle Scholar
  24. Sakakura, T., 1991, New aspects of stroma-parenchyma relations in mammary gland differentiation, Intern. Rev. Cytol 125:165.CrossRefGoogle Scholar
  25. Silberstein, G., Horn, K., Shyamala, G. and Daniel, C., 1994, Essential role of endogenous estrogens in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens, Endocrinology 134:84.PubMedCrossRefGoogle Scholar
  26. Silberstein, G., Strickland, P., Coleman, S. and Daniel, C., 1990, Epithelium-dependent extracellular matrix synthesis in transforming growth factor ß1 growth inhibited mouse mammary gland, J. Cell Biol. 110:2209.PubMedCrossRefGoogle Scholar
  27. Silberstein, G. and Daniel, C., 1987, Reversible inhibition of mammary ductal growth by transforming growth factor ß, Science 37:291.CrossRefGoogle Scholar
  28. Silberstein, G., Flanders, G., Roberts, A. and Daniel, C., 1992, Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by TGF-ß1, J. Cell Biol. 152:354.Google Scholar
  29. Spitzer, E., Zschiesche, W., Binas, B., Grosse, R. and Erdmann, B., 1994, EGF and TGF- modulate structural and functional differentiation of the mammary gland from pregnant mice, J. Cell. Biochem. in press.Google Scholar
  30. Sporn, M. and Roberts, A., 1992, Transforming growth factor-ß: recent progress and new challenges, J. Cell Biol. 119:1017.PubMedCrossRefGoogle Scholar
  31. Sporn, M. and Roberts, A., 1985, Autocrine growth factors and cancer, Nature 313:745.PubMedCrossRefGoogle Scholar
  32. Stoker, A., Streuli, C., Martins-Green, M. and Bisseil, M., 1990, Designer microenvironments for the analysis of cell and tissue function, Curr. Opin. Cell Biol. 2:864.CrossRefGoogle Scholar
  33. Streuli, C. and Bissell, M., 1990, Expression of extracellular matrix components is regulated by substratum, 7. Cell. Biol. 110:1405.CrossRefGoogle Scholar
  34. Streuli, C. and Bissell, M., 1991, Mammary epithelial cells, extracellular matrix and gene expression, in “Regulatory mechanisms in Breast Cancer”, Lippman, M. and Dickson, R., eds., Kluwer Academic Publishers, Norwell, MA. 365.CrossRefGoogle Scholar
  35. Topper, Y. and Freeman, C., 1980, Multiple hormone interactions in the development biology of the mammary gland, Physiol. Rev. 60:1049.PubMedGoogle Scholar
  36. Treuner, M., Kozak, C., Gallhan, D., Spitzer, E., Grosse, R. and Mueller, T., 1994, Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor heart-fatty acid binding protein, Gene ,in press.Google Scholar
  37. Veerkamp, J., van Kuppevelt, T., Maatman, R. and Prinsen, C., 1993, Structural and functional aspects of cytosolic fatty acid binding proteins, Prostaglandins, Leukotrienes and Essential Fatty Acids 49:887.CrossRefGoogle Scholar
  38. Wallukat, G., Böhmer, F.-D., Engstroem, U., Langen, P., Hollenberg, M., Behlke, J., Kuehn, H. and Grosse, R., 1991, Modulation of the ß-adrenergic response in cultured rat heart cells. II. Dissociation from lipid-binding activity of MDGI, Mol. Cell. Biochem. 102:49.PubMedGoogle Scholar
  39. Yang, Y., Spitzer, E., Kenney, N., Zschiesche, W., Li, M., Kromminga, A., Müller, T., Spener, F., Lezius, A., Veerlamp, J., Smith, G., Salomon, D. and Grosse, R., 1994, Members of the fatty acid binding protein family are differentiation factors for the mammary gland, J. Cell Biol., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Richard Grosse
    • 1
  1. 1.The Gade InstituteUniversity of BergenBergenNorway

Personalised recommendations