Purification and Characterization of S-Formylglutathione Hydrolase from Human, Rat and Fish Tissues

  • Martti Koivusalo
  • Risto Lapatto
  • Lasse Uotila
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 372)


Formaldehyde is oxidized in mammalian tissues and in several other sources to formate in two consecutive reactions catalyzed by separate enzymes (Uotila and Koivusalo, 1974a; 1974b) (Scheme 1). Formaldehyde and glutathione react first non-enzymically to form a hemithioacetal adduct (S-hydroxymethylglutathione) (Reaction 1). The adduct is the substrate of formaldehyde dehydrogenase (EC and is oxidized in the NAD-depend-ent reaction to S-formylglutathione (Reaction 2). Formaldehyde dehydrogenase has been shown to be identical with the class III alcohol dehydrogenase (Koivusalo et al., 1989). For a comprehensive review on formaldehyde dehydrogenase, see Uotila and Koivusalo (1989). The hydrolysis of S-formylglutathione to reduced glutathione and formate (Reaction 3) is catalyzed by a specific enzyme, S-formylglutathione hydrolase (EC Formate can be oxidized by the catalase reaction or is transferred to tetrahydrofolate to form 10-formyl-tetrahydrofolate. Formate is thus incorporated into the reactions of the C-1 metabolism by which it can be oxidized to carbon dioxide in the 10-tetrahydrofolate dehydrogenase reaction (Kutzbach and Stokstad, 1968).


Human Erythrocyte Wilson Disease Glyoxalase System Formaldehyde Dehydrogenase Candida Boidinii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, K., and Abe, K., 1986, Gene frequencies of S-formylglutathione hydrolase isozyme in a Japanese population, Jpn. J. Human Genet. 31: 353–355.CrossRefGoogle Scholar
  2. Apeshiotis, F., and Bender, K., 1986, Evidence that S-formylglutathione hydrolase and esterase D polymorphisms are identical. Hum. Genet. 74: 176–177.PubMedCrossRefGoogle Scholar
  3. Board, P.G., and Coggan, M., 1986, Genetic heterogeneity of S-formylglutathione hydrolase, Ann. Hum. Genet. 50:35–39.PubMedCrossRefGoogle Scholar
  4. Coates, P.M., Edwards, Y.H., and Hopkinson, D.A., 1976, Purification and properties of an esterase B4 from human liver, Eur. J. Biochem. 61: 331–335.PubMedCrossRefGoogle Scholar
  5. Eiberg, H., and Mohr, J., 1986, Identity of the polymorphisms for esterase D and S-formylglutathione hydrolase in red cells, Hum. Genet. 74:173–174.CrossRefGoogle Scholar
  6. Frydman, M., Bonné-Tamir, B., Fairer, L.A., Conneally, P.M., Magazanik, A. Ashbel, S., and Goldwitch, Z., 1985, Assignment of the gene for Wilson disease to chromosome 13: Linkage to the esterase D locus. Proc. Natl. Acad. Sci. USA 82: 1819–1821.PubMedCrossRefGoogle Scholar
  7. Enzyme Nomenclature 1992, Academic Press Inc., London.Google Scholar
  8. Hopkinson, D.A., Mestriner, M.A., Cortner, J., and Harris, H., 1973, Esterase D: a new human polymorphism, Ann. Hum. Genet., Lond., 37: 119–137.CrossRefGoogle Scholar
  9. Kato, N., Sakazawa, C., Nishizawa, T., Tani, Y.,and Yamada, H., 1980, Purification and characterization of S-formylglutatione hydrolase from a methanol-utilizing yeast, Kloeckera sp. No. 2201, Biochim. Biophys. Acta 611: 323–332.PubMedCrossRefGoogle Scholar
  10. Koivusalo, M., Baumann, M., and Uotila, L., 1989, Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase, FEBS Lett. 257: 105–109.PubMedCrossRefGoogle Scholar
  11. Kutzbach, C., and Stokstad, E.L.R., 1968, Partial purification of a 10-formyl-tetrahydrofolate:NADP oxidore-ductase from mammalian liver, Biochem.Biophys.Res. Comm. 30:111–117.PubMedCrossRefGoogle Scholar
  12. Lee, E.Y.-H., and Lee, W.H., 1986, Molecular cloning of the human esterase D gene, a genetic marker of retinoblastoma, Proc. Natl. Acad. Sei. USA 83: 6337–6341.CrossRefGoogle Scholar
  13. Lee, W.-H., Wheatley, W., Benedict, W.F., Huang, C.-M., and Lee, E.Y.-H.P., 1986, Purification, biochemical characterization, and biological function of human esterase D, Proc. Natl. Acad.Sci. USA 83: 6790–6794.PubMedCrossRefGoogle Scholar
  14. Matsuo, K., Kobayashi, K., Hagiwara, K., and Kajii, T., 1985, Purification and characterization of esterases D1 and D2 from human erythrocytes. Evidence that they are monomers. Eur. J. Biochem. 153:217–222.PubMedCrossRefGoogle Scholar
  15. Neben, I., Sahm, H., and Kula, M.-R., 1980, Studies on an enzyme, S-formylglutathione hydrolase, of the dissimilatory pathway of methanol in Candida boidinii, Biochim.Biophys.Acta 614:81–91.PubMedCrossRefGoogle Scholar
  16. Okada, Y.,and Wakabayashi, K., 1988, Purification and characterization of esterases D-l and D-2 from human erythrocytes, Arch. Biochem. Biophys. 263: 130–136.PubMedCrossRefGoogle Scholar
  17. Sparkes, R.S., Sparkes, M.C., Wilson, M.G., Towner, J.W., Benedict, W., Murphree, A.L., and Yunis, J.J., 1980, Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13ql4. Science 208: 1042–1044.PubMedCrossRefGoogle Scholar
  18. Squire, J., Dryja, T.P., Dunn, J., Goddard, A., Hofmann, T., Musarella, M., Willard, H.F., Becker, A.J., Gallie, B.L., and Phillips, R.A., 1986, Cloning of the esterase D gene: A polymorphic gene probe closely linked to the retinoblastoma locus on chromosome 13, Proc. Natl. Acad. Sci. USA 83: 6573–6577.PubMedCrossRefGoogle Scholar
  19. Talesa, V., Uotila, L., Koivusalo, M., Principato, G., Giovannini, E., and Rosi, G., 1989, Isolation of glyoxalase II from two different compartments of rat liver mitochondria. Kinetic and immunochemical characterization of the enzymes, Biochim. Biophys. Acta 993:7–11.PubMedCrossRefGoogle Scholar
  20. Tsuge, A., Uchida, H., and Ishimoto, G., 1987, Erythrocyte S-formylglutathione hydrolase polymorphism in Japanese and the relation to esterase D polymorphism. Jpn. J. Legal Med. 41: 93–96.Google Scholar
  21. Uotila, L., 1973a, Preparation and assay of glutathione thiol esters. Survey of human liver glutathione thiol esterases, Biochemistry 12:3938–3943.PubMedCrossRefGoogle Scholar
  22. Uotila, L., 1973b, Purification and characterization of S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from human liver, Biochemistry 12: 3944–3951.PubMedCrossRefGoogle Scholar
  23. Uotila, L., 1979a, Glutathione thiol esterases of human red blood cells. Fractionation by gel electrophoresis and isoelectric focusing. Biochim.Biophys.Acta 580:277–288.PubMedCrossRefGoogle Scholar
  24. Uotila, L., 1979b, Purification and properties of S-succinylglutathione hydrolase from human liver, J.Biol.Chem. 254: 7024–7029.PubMedGoogle Scholar
  25. Uotila, L., 1981, Thioesters of glutathione, Meth.Enzymol. 11: 424–430.Google Scholar
  26. Uotila, L., 1984, Polymorphism of red cell S-forrnylglutathione hydrolase in a Finnish population, Hum. Hered. 34: 273–277.PubMedCrossRefGoogle Scholar
  27. Uotila, L., 1989, Glutathione thiol esterases, in: “Coenzymes and Cofactors, vol.III, Glutathione. Chemical, Biochemical and Medical Aspects, part A”, D. Dolphin, R. Poulson, and O. Avramovic, eds., pp.767–804, John Wiley & Sons, Inc., New York.Google Scholar
  28. Uotila, L., and Koivusalo, M., 1974a, Formaldehyde dehydrogenase from human liver. Purification, properties, and evidence for the formation of glutathione thiol esters by the enzyme, J. Biol Chem. 249: 7653–7663.PubMedGoogle Scholar
  29. Uotila, L., and Koivusalo, M., 1974b, Purification and properties of S-formylglutathione hydrolase from human liver, J.Biol.Chem. 249:7664–7672.PubMedGoogle Scholar
  30. Uotila, L., and Koivusalo, M., 1979, Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism, Arch.Biochem.Biophys. 196:33–45.PubMedCrossRefGoogle Scholar
  31. Uotila, L., and Koivusalo, M., 1981, S-Formylglutathione hydrolase, Meth. Enzymol. 77:320–325.PubMedGoogle Scholar
  32. Uotila, L., and Koivusalo, M., 1983, Formaldehyde dehydrogenase, in: “Functions of Glutathione. Biochemical, Physiological, Toxicological and Clinical Aspects”, A. Larsson, S. Orrenius, A. Holmgren, B. Mannervik, eds., pp. 175–186, Raven Press, New York.Google Scholar
  33. Uotila, L., and Koivusalo, M., 1989, Glutathione-dependent oxidoreductases: formaldehyde dehydrogenase, in: “Coenzymes and Cofactors, vol. III, Glutathione. Chemical, Biochemical and Medical Aspects, part A”, D. Dolphin, R. Poulson and O. Avramovic, eds., pp. 517–551, John Wiley & Sons, Inc., New York.Google Scholar
  34. Varki, A., Muchmore, E., and Diaz, S., 1986, A sialic acid-specific O-acetylesterase in human erythrocytes: Possible identity with esterase D, the genetic marker of retinoblastomas and Wilson disease, Proc. Natl. Acad. Sci. USA 83: 882–886.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Martti Koivusalo
    • 1
  • Risto Lapatto
    • 1
  • Lasse Uotila
    • 1
  1. 1.Departments of Medical Chemistry and Clinical ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations