Substrate Specificity and Kinetic Mechanism of Tetrahymena 20α-Hydroxysteroid Dehydrogenase

  • Akira Hara
  • Ayako Inazu
  • Yoshihiro Deyashiki
  • Yoshinori Nozawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 372)


20α-Hydroxysteroid dehydrogenase (20HSD) is distributed in mammalian tissues (Gower, 1984) and micro-organisms (Dorfman and Ungar, 1965). 20HSDs purified from mammalian tissues are NADP+-dependent monomeric proteins with Mr values of 35,000-40,000 (Shikita et al., 1967; Sato et al., 1972;Nakajin et al., 1989;Noda et al., 1991), whereas the bacteral enzymes are NAD+-dependent tetramers of Mr 162,000 (Krafft and Hylemon, 1989) and monomers of Mr 48,000 (Rimsay et al., 1988). Recently, the cDNAs encoding the enzymes of bovine testis (Warren et al., 1993), rabbit ovary (Lacy et al., 1993) and rat ovary (Miura et al., 1994) have been cloned, and the enzymes have been shown to be members of the aldo-keto reductase superfamily which includes monomeric NADPH-de-pendent oxidoreductases (Flynn and Green, 1993; bifunctional enzymes: Aldehyde and aldose reductases exhibit dihydrodiol dehydrogenase activity (Matsuura et al., 1987; Hara et al., 1985, 1991) rat and human liver 3a-hydroxysteroid dehydrogenases associate with both carbonyl reductase and dihydrodiol dehydrogenase activities (Penning et al., 1986; Pawlowski et al., 1991; Deyashiki et al., 1992, 1994), bovine liver prostaglandin F synthase shows carbonyl reductase activity (Chen et al., 1992), and bovine testicular 20HSD possesses aldose reductase activity (Warren et al., 1993).


Aldose Reductase Kinetic Mechanism Ethyl Acetoacetate Ethyl Pyruvate Lithocholic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohren, K.M., Bullock, B., Wermuth, B. & Gabbay, K.H., 1989, The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases, J. Biol. Chem., 264:9547.PubMedGoogle Scholar
  2. Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72:248.PubMedCrossRefGoogle Scholar
  3. Chen, L.-Y., Watanabe, K. & Hayaishi, O., 1992, Purification and characterization of prostaglandin F synthase from bovine liver, Arch. Biochem. Biophys., 296:17.PubMedCrossRefGoogle Scholar
  4. Cleland, W.W., 1963a, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and equations, Biochim. Biophys. Acta, 67:104.PubMedCrossRefGoogle Scholar
  5. Cleland, W.W., 1963b, The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection, Biochim. Biophys. Acta, 67:188.PubMedCrossRefGoogle Scholar
  6. Cornish-Bowden, A., 1976, Principles of Enzyme Kinetics, Butterworths, London, p. 90.Google Scholar
  7. Daly, A.K. & Mantle, T.J., 1982, The kinetic mechanism of the major form of ox kidney aldehyde reductase with D-glucuronic acid, Biochem. J., 205:381.PubMedGoogle Scholar
  8. Deyashiki, Y., Ogasawara, H., Nakayama, T., Nakanishi, M., Miyabe, Y. & Hara, A., 1994, Molecular cloning of two human liver 3α-hydroxysteroid/dihydrodiol dehydrogenase isozymes that are identical with chlordecone reductase and bile-acid binder, Biochem. J., 299:545.PubMedGoogle Scholar
  9. Deyashiki, Y., Taniguchi, H., Amano, T., Nakayama, T., Hara, A. & Sawada, H., 1992, Structural and functional comparison of two human liver dihydrodiol dehydrogenase associated with 3a-hydroxysteroid dehydrogenase activity, Biochem. J., 282:741.PubMedGoogle Scholar
  10. Dorfman, R.I. & Ungar, F., 1965, The role of cytochrome P-450 in steroidogenesis and properties of some of the steroid-transforming enzymes, in Metabolism of Steroid Hormones, Academic Press, New York, p224.Google Scholar
  11. Flynn, T.G. & Green, N.C., 1993, The aldo-keto reductases: An overview, in Enzymology and Molecular Biology of Carbonyl Metabolism 4, Weiner, H., ed., Plenum Press, New York, p. 251.CrossRefGoogle Scholar
  12. Gower, D.B., 1984, Steroid transformations by microorganisms, in Biochemistry of Steroid Hormones, 2nd edn., Makin, H.L.J., ed., Backwell Scientific Publications, Oxford, p. 230.Google Scholar
  13. Hara, A., Hayashibara, M., Nakayama, T., Hasebe, K., Usui, S. & Sawada, H., 1985, Guinea-pig liver testosterone 17b-dehydrogenase (NADP+) and aldehyde reductase exhibit benzene dihydrodiol dehydrogenase activity, Biochem. J., 225:177.PubMedGoogle Scholar
  14. Hara, A., Matsuura, K., Sato, K., Deayashiki, Y., Miyabe, Y., Bunai, Y & Ohya, I., 1994, Adrenal aldose reductase: Its characterization, localization and role, (in preparation).Google Scholar
  15. Hara, A., Nakayama, T., Harada, T., Kanazu, T., Shinoda, M., Deayashiki, Y & Sawada, H., 1991, Distribution and characterization of dihydrodiol dehydrogenases in mammalian ocular tissues, Biochem. J., 275:113.PubMedGoogle Scholar
  16. Hara, A., Seiriki, K., Nakayama, T. & Sawada, H., 1985, Discrimination of multiforms of diacetyl reductase in hamster liver, in Enzymology of Carbonyl Metabolism 2, Flynn, T.G. & Weiner, H., eds., Alan R. Liss, New York, p. 291.Google Scholar
  17. Heidlas, J. & Tressl, R., 1990, Purification and properties of two oxidoreductases catalyzing the enantioselective reduction of diacetyl and other diketones from baker’s yeast, Eur. J. Biochem., 188:165.PubMedCrossRefGoogle Scholar
  18. Inazu, A., Sato, K., Nakayama, T., Deyashiki, Y., Hara, A. & Nozawa, Y., 1994, Purification and characterization of a novel dimeric 20α-hydroxysteroid dehydrogenase from Tetrahymena pyriformis. Biochem. J., 297:195.PubMedGoogle Scholar
  19. Kataoka, M., Sakai, H., Morikawa, T., Katho, M., Miyoshi, T., Shimizu, S. & Yamada, H., 1992, Characterization of aldehyde reductase of Spombolomyces salmonicolor, Biochim. Biophys. Acta, 1122:57.CrossRefGoogle Scholar
  20. Krafft, A.E. & Hylemon, P.B., 1989, Purification and characterization of a novel form of 20α-hydroxysteroid dehydrogenase from Clostridium scindens, J. Bacteriol. 171:2925.PubMedCentralPubMedGoogle Scholar
  21. Kubiseski, T.J., Hyndman, D.J., Morjana, N.A. & Flynn, T.G., 1992, Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformation change on coenzyme binding, J. Biol. Chem., 267:6510.PubMedGoogle Scholar
  22. Lacy, W.R., Washenik, K.J., Cook, R.G. & Dunbar, B.S., 1993, Molecular cloning and expression of an abundant rabbit ovarian protein with 20α-hydroxysteroid dehydrogenase activity, Mol. Endocrinol., 7:58.PubMedGoogle Scholar
  23. Matsuura, K., Hara, A., Nakayama, T., Nakagawa, M. & Sawada, H., 1987, Purification and characterization of two multiple forms of dihydrodiol dehydrogenase from guinea-pig testis, Biochim. Biophys. Acta, 912:270.PubMedCrossRefGoogle Scholar
  24. Miura, R., Shito, K., Noda, K., Yagi, S., Ogawa, T. & Takahashi, M., 1994, Molecular cloning of cDNA for rat ovarian 20α-hydroxysteroid dehydrogenase (HSD1), Biochem. J. 299:561.PubMedGoogle Scholar
  25. Nakajin, S., Kawai, Y., Ohno, S. & Shinoda, M., 1989, Purification and characterization of pig adrenal 20α-hydroxysteroid dehydrogenase, J. Steroid Biochem., 33:1181.PubMedCrossRefGoogle Scholar
  26. Noda, K., Shota, K. & Takahashi, M., 1992, Purification and characterization of rat ovarian 20α-hydroxysteroid dehydrogenase, Biochim. Biophys. Acta, 1079:112.CrossRefGoogle Scholar
  27. Pawlowski, J.E., Huizinga, M. & Penning T.M., 1991, Cloning and sequencing of the cDNA for rat liver 3a-hydroxysteroid dehydrogenase, J. Biol. Chem., 266:8820.PubMedGoogle Scholar
  28. Penning, T.M., Smithgall, T.E., Askonas, L.J. & Sharp, B., 1986, Rat liver 3α-hydroxysteroid dehydrogenase, Steroids, 47:221.PubMedCrossRefGoogle Scholar
  29. Radhika, K. & Northrop, D., 1984, A new kinetic diagnostic for enzymatic mechanisms using alternative substrate, Anal. Biochem., 141:413.CrossRefGoogle Scholar
  30. Rimsay, R.L., Murphy, G.W., Martin, C.J. & Orr, J.C., 1988, The 20α-hydroxysteroid dehydrogenase of Streptomyces hydrogenans, Eur. J. Biochem. 174:431CrossRefGoogle Scholar
  31. Sato, F., Takagi, Y. & Shiota, M., 1972, 20α-Hydroxysteroid dehydrogenase of procine testes. Purification and properties, J. Biol. Chem., 147:815.Google Scholar
  32. Shieh, W.-R., Gopalan, A.S. & Sin, C.J., 1985, Stereochemical control of yeast reduction 5. Characterization of the oxidoreductases involved in the reduction of β-keto esters, J. Am. Chem. Soc, 107:2993.CrossRefGoogle Scholar
  33. Shikita, M., Inano, H. & Tamaoki, B., 1967, Further studies on 20α-hydroxysteroid dehydrogenase of rat testes, Biochemistry, 6:1760.PubMedCrossRefGoogle Scholar
  34. Shimizu, S., Hattori, S., Hata, H. & Yamada, H., 1988, A novel fungal enzyme, NADPH-dependent carbonyl reductase, showing high specificity to conjugated polyketones. Purification and characterization, Eur. J. Biochem., 174:37.PubMedCrossRefGoogle Scholar
  35. Siegel, I. H., 1975, Enzyme Kinetics, John Wiley & Sons, New York, p. 465.Google Scholar
  36. Warren, J.C., Murdock, G.L., Ma, Y., Goodman, S.G. & Zimmer, W.E., 1993, Molecular cloning of testicular 20α-hydroxysteroid dehydrogenase: Identity with aldose reductase, Biochemistry, 32:1401.PubMedCrossRefGoogle Scholar
  37. Ward, W.H.J., Cook, P.N., Mirrlees, D.J., Brittain, D.R., Preston, J., Carey, F., Tuffin, D.P & Howe, R., 1993, Inhibition of aldose reductase by (2,6-dimethylphenylsulphonyl)-nitromethane: Possible implications for the nature of an inhibitor binding site and a cause of biphasic kinetics, in Enzymology and Molecular Biology of Carbonyl Metabolism 4, Weiner, H., ed., Plenum Press, New York, p. 301.CrossRefGoogle Scholar
  38. Wermuth, B., 1985, Aldo-keto reductases, in Enzymology of Carbonyl Metabolism 2, Flynn, T.G. & Weiner, H., eds., Alan R. Liss, New York, p. 209.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Akira Hara
    • 1
  • Ayako Inazu
    • 1
  • Yoshihiro Deyashiki
    • 1
  • Yoshinori Nozawa
    • 2
  1. 1.Biochemistry LaboratoryGifu Pharmaceutical UniversityGifu 502Japan
  2. 2.Department of BiochemistryGifu University School of MedicineGifu 500Japan

Personalised recommendations