Skip to main content

Stopped-Flow Studies of Human Aldose Reductase Reveal which Enzyme form Predominates During Steady-State Turnover in Either Reaction Direction

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 372))

Abstract

Progress in the aldo-keto reductase field has been quite rapid since the solution of the 3-dimensional structure of aldose reductase (ALR2) by the French group (Rondeau et al., 1992) and the Baylor group (Wilson et al., 1992), with additional contributions from Washington University School of Medicine with BioCryst Pharmaceuticals (Borhani et al., 1992) and with Dr. Quiocho’s laboratory (Wilson et al., 1993). Most recently, a definitive assignment of the active site constellation of amino acid residues and their likely roles in the catalytic mechanism was established by the collaborative efforts of researchers at Baylor, Brandeis and The Whittier Institute (Harrison et al., 1994; Bohren et al., 1994).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appleman, J.R., Prendergast, N., Delcamp, T.J., Freisheim, J.H., and Blakely, R.L. (1988) Kinetics of formation and isomerization of Methotrexate complexes of recombinant human dihydrofolate reductase. J. Biol. Chem. 263:103004–103013.

    Google Scholar 

  • Barshop, B.A., Wrenn, R.F., & Frieden, C. (1983) Analysis of numerical methods for computer simulation of kinetic processes: Development of KINSIM — A flexible, portable system. Anal. Biochem. 130:134–145.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar, A., Das, B., Gavva, S.R., Cook, P.F., and Srivastava, S.K. (1988) The kinetic mechanism of human placental aldose reductase and aldehyde reductase II. Arch. Biochem. Biophys. 261:264–274.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar, A., Liu, S.-Q., Ueno, N., Chakrabarti, B., and Srivastava, S.K. (1994) Human placental aldose reductase: Role of Cys-298 in substrate and inhibitor binding. Biochim. Biophys. Acta 1205:207–214.

    Article  CAS  PubMed  Google Scholar 

  • Bohren, K.M., Page, J.L., Shankar, R., Henry, S.P., and Gabbay, K.H. (1991) Expression of human aldose and aldehyde reductase. Site-directed mutagenesis of a critical lysine 262. J. Biol. Chem. 266:24031–24037.

    CAS  PubMed  Google Scholar 

  • Bohren, K.M., Grimshaw, C.E., and Gabbay, K.H. (1992) Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J. Biol. Chem. 267:20965–20970.

    CAS  PubMed  Google Scholar 

  • Bohren, K.M., Grimshaw, C.E., Lai, C.-J., Harrison, D.A., Ringe, D., Petsko, G.A., and Gabbay, K.H. (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase. Enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33:2021–2032.

    Article  CAS  PubMed  Google Scholar 

  • Borhani, D.W., Harter, T.M., and Petrash, J.M. (1992) The crystal structure of the aldose reductase-NADPH binary complex. J. Biol Chem. 267:24841–24847.

    CAS  PubMed  Google Scholar 

  • Cleland, W.W. (1975) Partition analysis and the concept of net rate constants as tools in enzyme kinetics. Biochemistry 14:3220–3224.

    Article  CAS  PubMed  Google Scholar 

  • Cleland, W.W. (1979) Statistical analysis of enzyme kinetic data. Methods Enzymology 63:103–138.

    CAS  Google Scholar 

  • Del Corso, A., Barsacchi, D., Giannessi, M., Tozzi, M.G., Camici, M., and Mura, U. (1989) Change in stereospecificity of bovine lens aldose reductase modified by oxidative stress. J. Biol. Chem. 264:17653–17655.

    CAS  PubMed  Google Scholar 

  • Ehrig, T., Bohren, K.M., Prendergast, F.G., and Gabbay, K.H. (1994) Mechanism of aldose reductase inhibition: Binding of NADP+7NADPH and Alrestatin-like inhibitors. Biochemistry 33:7157–7165.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, B.W, and McNatt, L.G. (1986) Characterization of the reduction of 3-acetylpyridine adenine dinu-cleotide phosphate by benzyl alcohol catalyzed by aldose reductase. Arch. Biochem. Biophys. 246:75–81.

    Article  CAS  PubMed  Google Scholar 

  • Grimshaw, C.E., Shahbaz, M., Jahangiri, G., Putney, C.G., McKercher, S.R., and Mathur, E.J. (1989) Kinetic and structural effects of activation of bovine kidney aldose reductase. Biochemistry 28:5343–5353.

    Article  CAS  PubMed  Google Scholar 

  • Grimshaw, C.E., Shahbaz, M., and Putney, C.G. (1990) Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase. Biochemistry 29:9947–9955.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, D.H., Bohren, K.M., Ringe, D., Petsko, G.A., and Gabbay, K.H. (1994) An anion binding site in human aldose reductase: Mechanistic implications for the binding of citrate, cacodylate and glucose 6-phosphate. Biochemistry 33:2011–2020.

    Article  CAS  PubMed  Google Scholar 

  • Kubiseski, T.J., Hyndman, D.J., Morjana, N.A., and Flynn, T.G. (1992) Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon nucleotide binding. J. Biol. Chem. 267:6510–6517.

    CAS  PubMed  Google Scholar 

  • Liu, S.-Q., Bhatnagar, A., and Srivastava, S.K. (1992) Does Sorbinil bind to the substrate binding site of aldose reductase? Biochem. Pharmacol. 44:2427–2429.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S.-Q., Bhatnagar, A., and Srivastava, S.K. (1993) Bovine lens aldose reductase. pH-Dependence of steady-state kinetic parameters and nucleotide binding. J. Biol. Chem. 268:25494–25499.

    CAS  PubMed  Google Scholar 

  • Rondeau, J.-M., Tête-Favier, F., Podjarny, A., Reymann, J.-M., Barth, P., Biellmann, J.-F., and Moras, D. (1992) Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 355:469–472.

    Article  CAS  PubMed  Google Scholar 

  • Sato, S., and Kador, P.F. (1990) Inhibition of aldehyde reductase by aldose reductase inhibitors. Biochem. Pharmacol. 40:1033–1042.

    Article  CAS  PubMed  Google Scholar 

  • Sekhar, V.C., and Plapp, B.V. (1988) Mechanism of binding of horse liver alcohol dehydrogenase and nicotinamide adenine dinucleotide. Biochemistry 27:5082–5088.

    Article  CAS  PubMed  Google Scholar 

  • Sekhar, V.C., and Plapp, B.V. (1990) Rate constants for a mechanism including intermediates in the interconversion of ternary complexes for horse liver alcohol dehydrogenase. Biochemistry 29:4289–4295.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S.K., Hair, G.A., and Das, B. (1985) Activated and unactivated forms of human erythrocyte aldose reductase. Proc. Natl. Acad. Sci. USA 82:7222–7226.

    Article  CAS  PubMed  Google Scholar 

  • Vander Jagt, D.L., and Hunsaker, L.A. (1993) Substrate specificity of reduced and oxidized forms of human aldose reductase. Adv. Exp. Med. Biol. 328:279–288.

    Article  CAS  PubMed  Google Scholar 

  • Ward, W.H.J., Cook, P.N., Mirrlees, D.J., Brittain, D.R., Preston, J., Carey, F., Tuffin, D.P., and Howe, R. (1993) Inhibition of aldose reductase by (2,6-dimethylphenylsulphonyl)nitromethane: Possible implications for the nature of an inhibitor binding site and a cause of biphasic kinetics. Adv. Exp. Med. Biol. 328:301–311.

    Article  CAS  PubMed  Google Scholar 

  • Wermuth, B. (1990) Inhibition of aldehyde reductase by carboxylic acids. Adv. Exp. Med. Biol. 284:197–204.

    Article  Google Scholar 

  • Wilson, D.K., Bohren, K.M., Gabbay, K.H., and Quiocho, F.A. (1992) An unlikely sugar substrate binding site in the 1.65 Å structure of human aldose reductase holoenzyme implicated in diabetic complications. Science 251:81–84.

    Article  Google Scholar 

  • Wilson, D.K., Tarle, I., Petrash, J.M., and Quiocho, F.A. (1993) Refined 1.8 Å structure of human aldose reductase complexed with the potent inhibitor Zopolrestat. Proc. Natl. Acad. Sci. USA 90:9847–9851.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerte, C.T., Patane, K., & Frieden, C (1987) Analysis of progress curves by simulations generated by numerical integration. Biochemistry 26:6545–6552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grimshaw, C.E., Lai, CJ. (1995). Stopped-Flow Studies of Human Aldose Reductase Reveal which Enzyme form Predominates During Steady-State Turnover in Either Reaction Direction. In: Weiner, H., Holmes, R.S., Wermuth, B. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 5. Advances in Experimental Medicine and Biology, vol 372. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1965-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1965-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5808-4

  • Online ISBN: 978-1-4615-1965-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics