Skip to main content

Optical Processes in Microcavities

A new generation of optical microresonators is making possible the exploration of quantum electrodynamic phenomena in condensed matter systems and providing microlasers with a wide range of potential applications.

  • Chapter
Book cover Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

Studies of optical microresonators with dimensions between 0.1 and 10 microns are now under way in a wide variety of condensed matter systems. Ideally, one can isolate a single mode of the optical field in a cube a half-wavelength on a side with perfectly reflecting walls. Liquid droplets, polymer spheres and semiconductor Fabry-Perot microcavities with dielectric mirrors are examples of microresonators with which one can approach this ideal limit and nearly isolate a few modes of the electromagnetic field from the continuum of surrounding free-space modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. E. Morin, Q. Wu, T. W. Mossberg, Optics & Photonics News, August 1992, p. 8.

    Google Scholar 

  2. F. DeMartini, G.R. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988).

    Article  Google Scholar 

  3. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E.P. Ippen, M. Suzuki, Opt. Quantum Electron. 24, S245 (1992).

    Article  Google Scholar 

  4. T. Baba. T. Hamano, F. Koyama, K. Iga, IEEE J. Quantum Electron. 27, 1347 (1991).

    Article  Google Scholar 

  5. G. Björk, Y. Yamamoto, IEEE J. Quantum Electron. 27, 2386 (1991).

    Article  Google Scholar 

  6. Y. Yamamoto, G. Björk, H. Heimann. R. Horowicz. in Optics of Semiconductor Nanostructures, F. Henneberger, S. Schmitt-Rink, E. O. Göbel, eds., VCH. Weinheim. Germany (1993), p. 275.

    Google Scholar 

  7. Y. Yamamoto, S. Machida, G. Björk. Phys. Rev. A 44, 657 (1991).

    Google Scholar 

  8. F. M. Matinaga. A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki. Y. Kadota. M. Ikeda. Appl. Phys. Lett. 62, 443 (1993).

    Article  Google Scholar 

  9. Y. Yamamoto, S. Machida. K. Igeta. Y. Horikoshi. in Coherence and Quantum Optics VI, J. H. Eberiy, L. Mandel. E. Wolf, eds. Plenum, New York (1989), p. 1249.

    Google Scholar 

  10. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini. R. Loudon. Phys. Rev. A 43, 2480 (1991).

    Google Scholar 

  11. E. F. Schubert, A. M. Vredenberg, N. E. J. Hunt, Y. H. Wong, P. C. Becker. J. M. Poate. D. C. Jacobson, L. C. Feldman, G. J. Zydzik. Appl. Phys. Lett. 61, 1381 (1992).

    Article  Google Scholar 

  12. H. M. Tzeng, K. F. Wall. M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).

    Article  Google Scholar 

  13. A. J. Campillo, J. D. Eversole, H.-B. Lin, Phys. Rev. Lett. 67, 437 (1991).

    Article  Google Scholar 

  14. M. Kuwata-Gonokami, K. Takeda, H. Yasuda, K. Ema. Jpn. J. Appl. Phys. Lett. 31, 99 (1992).

    Article  Google Scholar 

  15. S. L. McCall, A. F. J. Levi, R. E. Slusher. S. J. Pearton, R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).

    Article  Google Scholar 

  16. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, R. A. Logan, Appl. Phys. Lett. (1993), to be published.

    Google Scholar 

  17. Y. H. Lee, J. L. Jewell, A. Scherer. S. L. McCall, J. P. Harbison. L. T. Florez, Electron. Lett. 25, 1377 (1989).

    Article  Google Scholar 

  18. R. S. Geels, L. A. Coldren. Electron. Lett. 27, 1359 (1991).

    Google Scholar 

  19. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, S. J. Pearton, Electron. Lett. 28, 1010 (1992).

    Article  Google Scholar 

  20. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks. K. D. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 347, 539 (1990).

    Article  Google Scholar 

  21. M. Orenstein, A. C. Von Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, Electron. Lett. 27, 437 (1990).

    Article  Google Scholar 

  22. D. Vakshoori, J.D. Wynn, G.J. Zydzik, R.E. Leibenguth, submitted to Appl. Phys. Lett, (available from Slusher).

    Google Scholar 

  23. H. O. Everitt, Optics & Photonics News, November 1992, p. 20.

    Google Scholar 

  24. P. L. Gourley, M. E. Warren, G. A. Vawter, T. M. Bren-nan, B. E. Hammons, Appl. Phys. Lett. 60, 2714 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, Y., Slusher, R.E. (1995). Optical Processes in Microcavities. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics