Physics and Device Applications of Optical Microcavities

  • H. Yokoyama
Part of the NATO ASI Series book series (NSSB, volume 340)


Optical microcavities are resonators that have at least one dimension on the order of a single optical wavelength. These structures enable one to control the optical emission properties of materials placed inside them. They can, for example, modify the spatial distribution of radiation power, change the spectral width of the emitted light, and enhance or suppress the spontaneous emission rate. In addition to being attractive for studying the fundamental physics of the interaction between materials and vacuum field fluctuations, optical microcavities hold technological promise for constructing novel kinds of light-emitting devices. One of their most dramatic potential features is thresholdless lasing. In this way and others, controlled spontaneous emission is expected to play a key role in a new generation of optical devices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Z. Phys. 18, 121 (1917).Google Scholar
  2. 2.
    T. H. Maiman. Nature 187, 493 (1960).CrossRefGoogle Scholar
  3. 3.
    S. Haroche and D. Kleppner. Phys. Today 42, 24 (January 1988).CrossRefGoogle Scholar
  4. 4.
    A. G. Vaidyanathan. W. P. Spencer. D. Kleppner. Phys. Rev. Lett. 47, 1592 (1981).CrossRefGoogle Scholar
  5. 5.
    P. Goy. J. M. Raimond. M. Gross. S. Haroche. Phys. Rev. Lett. 50, 1903 (1983).CrossRefGoogle Scholar
  6. 6.
    D. Meschede. H. Watther. G. Müller, Phys. Rev. Lett. 54, 551 (1985).CrossRefGoogle Scholar
  7. 7.
    G. Rempe and H. Walther, Phys. Rev. Lett. 58, 353 (1987).CrossRefGoogle Scholar
  8. 8.
    W. Jhe et al., Phys. Rev. Lett., p. 666.Google Scholar
  9. 9.
    D. J. Heinzen. J. J. Childs. J. E. Thomas. M. S. Feld. Phys. Rev. Lett., p. 1320.Google Scholar
  10. 10.
    D. J. Heinzen and M. S. Feld. Phys. Rev. Lett. 59, 2623 (1987).CrossRefGoogle Scholar
  11. 11.
    F. DeMartini. G. Irmocenti. G. R. Jacobovitz. P. Mataloni. Phys. Rev. Lett., p. 2995.Google Scholar
  12. 12.
    M. Suzuki. H. Yokoyama. S. D. Brorson. E. P. Ippen, Appl. Phys. Lett. 58, 998 (1991).CrossRefGoogle Scholar
  13. 13.
    E. Yablonovitch. T.J. Gmitter. R. Bhat. Phys. Rev. Lett. 61, 2546 (1988).CrossRefGoogle Scholar
  14. 14.
    H. Yokoyama. K. Nishi. T. Anan, H. Yamada. technical digest of the Topical Meeting on Quantum Wells for Optics and Optoelectronics. Salt Lake City. UT. March 1989. paper MD4.Google Scholar
  15. H. Yokoyama et al., Appl. Phys. Lett. 57, 2814 (1990).CrossRefGoogle Scholar
  16. 15.
    Y. Yamamoto. S. Machida. K. Igeta. Y. Horikoshi, paper presented at the 6th Rochester Conference on Coherence and Quantum Optics. Rochester. NY. June 1989; Opt. Commun. 80, 337 (1991)Google Scholar
  17. 16.
    T. Kobayashi. T. Segawa. A. Monmoto. T. Sueta. paper presented at the 43rd fall meeting of the Japanese Society of Applied Physics. Tokyo. September 1982; T. Kobayashi. A. Morimoto. T. Sueta. paper presented at the 46th fall meeting of the Japanese Society of Applied Physics. Tokyo. October 1985 (both in Japanese).Google Scholar
  18. 17.
    E. Yablonovitch. Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
  19. 18.
    H. Yokoyama and S. D. Brorson. J. Appl. Phys. 66, 4801 (1989).CrossRefGoogle Scholar
  20. 19.
    S. D. Brorson. H. Yokoyama. E. P. Ippen, IEEE J. Quantum Electron. 26, 1492 (1990).CrossRefGoogle Scholar
  21. 20.
    F. DeMartini and J. R. Jacobovitz. Phys. Rev. Lett 60, 1711 (1988).CrossRefGoogle Scholar
  22. 21.
    H. Yokoyama. M. Suzuki. Y. Nambu. Appl. Phys Lett. 58, 2598 (1991).CrossRefGoogle Scholar
  23. 22.
    P. W. Milonni and P. L. Knight. Opt. Commun. 9, 119 (1973).CrossRefGoogle Scholar
  24. 23.
    P. Stehle. Phys. Rev. A 2, 102 (1970).Google Scholar
  25. 24.
    M. R. Philopott, Chem. Phys. Lett. 19, 435 (1973).CrossRefGoogle Scholar
  26. 25.
    G. Bjork. S. Machida. Y. Yamamoto. K. Igeta. Phys. Rev. A 44, 669 (1991).Google Scholar
  27. 26.
    T. Baba. T. Hamano. F. Koyama. K. Iga. IEEE J. Quantum Electron. 27, 1347 (1991).CrossRefGoogle Scholar
  28. 27.
    H. M. Tzeng. K. F. Wall. M. B. Long. R. K. Chang. Opt. Lett. 9, 499 (1984).CrossRefGoogle Scholar
  29. 28.
    A. J. Canpillo. J. D. Eversole. H.-B. Lin. Phys. Rev. Lett. 67, 437 (1991).CrossRefGoogle Scholar
  30. 29.
    K. H. Drexhage. in Progress in Optics, E. Wolf. Ed. (North-Holland. Amsterdam, 1974). vol. 12. p. 165.Google Scholar
  31. 30.
    F. Koyamar S. Kinoshita. K. Iga. Trans. Inst. Elec. Comput. Eng. Jpn. E71, 1089 (1988).Google Scholar
  32. 31.
    J. L. Jewell et al., Appl. Phys. Lett. 54, 1400 (1989).CrossRefGoogle Scholar
  33. 32.
    A. Schere. J. L. Jewell, Y. H. Lee. J. P. Harbison. L. T. Florez. Appl. Phys. Lett. 55, 2724 (1989).Google Scholar
  34. 33.
    R. S. Geels and L. A. Coldren. Appl. Phys. Lett. 57, 1605 (1990).CrossRefGoogle Scholar
  35. 34.
    Y. Nambu and H. Yokoyama. paper presented at the Quantum Electronics and Laser Science Conference. Baltimore. MD. May 1991.Google Scholar
  36. 35.
    S. John. Phys. Today 45, 32 (May 1991).CrossRefGoogle Scholar
  37. 36.
    One of the quantum mechanical states of light that satisfies the minimum uncertainty. The amplitude fluctuation of light is suppressed while the phase fluctuation is enhanced.Google Scholar
  38. 37.
    I thank S. D. Brorson. E. P. Ippen. Y. Nambu. M. Suzuki. K. Nishi. T. Anan. and H. Yamada for collaboration and helpful discussions.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H. Yokoyama

There are no affiliations available

Personalised recommendations