Skip to main content

Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

  • 2356 Accesses

Abstract

Two salient features of the excitonic state in semiconductor quantum dots are theoretically clarified. One is the enhanced excitonic optical nonlinearity arising from the state filling of discrete levels due to the quantum size effect. The calculated third-order nonlinear susceptibility explains successfully the recent experimental results. The other feature is the exciton dynamics in semiconductor quantum dots. A comprehensive interpretation is presented for the fast- and slow-decay components in phase conjugation and luminescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Jain and R. G Lind, J. Opt. Soc. Am. 73, 647 (1983).

    Article  Google Scholar 

  2. G. R. Olbright and N. Peyghambarian, Appl. Phys. Lett. 48, 1184 (1986).

    Article  Google Scholar 

  3. M. C. Nuss, W. Zinth, and W. Kaiser, Appl. Phys. Lett. 49, 1717 (1986).

    Article  Google Scholar 

  4. L. Banyai and S. W. Koch, Phys. Rev. Lett. 57, 2722 (1986).

    Article  Google Scholar 

  5. S. S. Yao, G. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 46, 801 (1985).

    Article  Google Scholar 

  6. P. Roussignol, D. Ricard, K. C. Rustagi, and G. Flytzanis, Opt. Commun. 55, 1431 (1985).

    Article  Google Scholar 

  7. P. Roussignol, D. Ricard, J. Lukasik, and G. Flytzanis, J. Opt. Soc. Am. B 4, 5(1987).

    Google Scholar 

  8. D. Cotter, in Technical Digest of XIV International Quantum Electronics Conference, San Francisco, June 1986 (Optical Society of America), p. D19.

    Google Scholar 

  9. H. Shinojima, M. Mitsunaga, and K. Kubodera, in Extended Abstracts of Spring Meeting of the Physical Society of Japan, March, 1987 (unpublished), p. 354.

    Google Scholar 

  10. J. Warnock and D. D. Awschalom, Phys. Rev. B 32, 5529 (1985).

    Google Scholar 

  11. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, J. Phys. Chem. 90, 3393 (1986).

    Article  Google Scholar 

  12. A. Nakamura and M. Hirai, in Extended Abstracts of Fall Meeting of the Physical Society of Japan, September, 1986 (unpublished), p. 289.

    Google Scholar 

  13. Z. W. Fu and J. D. Dow, Bull. Am. Phys. Soc. 31, 557 (1986).

    Google Scholar 

  14. Similar calculations have been done without the surface polarization energy by Al. L. Efros and A. L. Efros, Fiz. Tekh.

    Google Scholar 

  15. Poluprovodn. 16, 1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)]; Y. Kayanuma, Solid State Commun. 59, 405 (1986)

    Google Scholar 

  16. S. V. Nair, S. Sinha, and K. G. Rustagi, Phys. Rev. B 35, 4098 (1987).

    Article  Google Scholar 

  17. The calculation by L. E. Brus, J. Chem. Phys. 80, 4403 (1984) includes the surface polarization energy but is not carried out for the s-like wave function as in (1).

    Article  Google Scholar 

  18. C. H. Henry and K. Nassau, Phys. Rev. B 1. 1628 (1970).

    Google Scholar 

  19. C. Weisbuch and R. G. Ulbrich, in Light Scattering in Solids III, edited by M. Cardona and G. Güntherodt (Springer, Berlin. 1982), p. 218.

    Google Scholar 

  20. T. Takagahara and E. Hanamura, Phys. Rev. Lett. 56, 2533 (1986).

    Article  Google Scholar 

  21. E. Hanamura, Solid State Commun. 62, 465 (1987).

    Article  Google Scholar 

  22. I. M. Lifshitz and V. V. Slezov, Zh. Eksp. Teor. Fiz. 35, 479 (1958) [Sov. Phys.—JETP 35, 331 (1959)].

    Google Scholar 

  23. T. Tokizaki and T. Yajima, in Extended Abstracts of Fall Meeting of the Physical Society of Japan, September, 1986 (unpublished), p. 382.

    Google Scholar 

  24. R. T. Cox and J. J. Davies, Phys. Rev. B 34, 8591 (1986).

    Google Scholar 

  25. R. A. Street, Adv. Phys. 30, 593 (1981).

    Article  Google Scholar 

  26. K. Tanaka, in Fundamental Physics of Amorphous Semiconductors, edited by F. Yonezawa (Springer, Berlin, 1981), p. 104.

    Chapter  Google Scholar 

  27. F. M. Durville, E. G. Behrens, and R. C. Powell, Phys. Rev. B 35, 4109 (1987).

    Google Scholar 

  28. J. Warnock and D. D. Awschalom, Appl. Phys. Lett. 48, 425 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takagahara, T. (1995). Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics