Synthesis and Spectroscopy of II–VI Quantum Dots: An Overview

  • M. G. Bawendi
Part of the NATO ASI Series book series (NSSB, volume 340)

Abstract

Small particles of II-VI semiconductors which are 10 to 100 Å in diameter exhibit quantum confinement effects at room temperature. They are the zero dimensional analog of quantum wells and are often referred to as quantum dots. This review tutorial discusses the application of simple effective mass theory to these small particles in section 2. Section 3 summarizes a synthetic procedure which produces crystallites of CdSe with sizes tunable between ∼15 and 115Å and with distributions <5%. Sections 4 and 5 discuss the spectroscopy of these crystallites, with section 4 focusing on the absorption event and section 5 focusing on the luminescence event. Since the intended audience of this review tutorial is the interested but uninitiated, the tone is kept simple. The number of references is also purposely kept manageable. The intent here is to convey some of the basic ideas of the field.

Keywords

Burning Phosphorus Argon Cadmium Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al. L. Efros and A. L. Efros, Fiz. Tekh. Poluprovodn. 16, 1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)].Google Scholar
  2. 2.
    L. E. Brus, J. Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
  3. 3.
    S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B 35, 8113 (1987).CrossRefGoogle Scholar
  4. 4.
    F. Hache, D. Ricard, and C. Flytzanis, Appl. Phys. Lett. 55, 1504 (1989).CrossRefGoogle Scholar
  5. 5.
    C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
  6. 6.
    M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglas, and L. E. Brus, J. Am. Chem. Soc. 110, 3046 (1988).CrossRefGoogle Scholar
  7. 7.
    J. E. Bowen Katari, V. L. Colvin, and A. P. Alivisatos, J. Phys. Chem. 98, 4109 (1994).CrossRefGoogle Scholar
  8. 8.
    N. Herron, J. C. Calabrese, W. E. Farneth, and Y. Wang, Science 259, 1426 (1993).CrossRefGoogle Scholar
  9. 9.
    M. G. Bawendi, A. R. Kortan, M. L. Steigerwald, and L. E. Brus, J. Chem. Phys. 91, 7282 (1989).CrossRefGoogle Scholar
  10. 10.
    M. A. Marcus, W. Flood, M. L. Steigerwald, L. E. Brus, and M. G. Bawendi, J. Phys. Chem. 95, 1572 (1991).CrossRefGoogle Scholar
  11. 11.
    A. M. Thayer, M. L. Steigerwald, T. M. Duncan, D. C. Douglas, and L. E. Brus, Phys. Rev. Lett. 60, 2673 (1988).CrossRefGoogle Scholar
  12. 12.
    J. R. Sachleben, E. Wrenn-Wooten, L. Emsley, A. Pines, V. L. Colvin, and A. P. Alivisatos, Chem. Phys. Lett. 198, 431 (1992).CrossRefGoogle Scholar
  13. 13.
    L. R. Becera, C. B. Murray, R. G. Griffin, and M. G. Bawendi, J. Chem. Phys. 100, 3297 (1994).CrossRefGoogle Scholar
  14. 14.
    B. O. Dabbousi, C. B. Murray, M. F. Rubner, and M. G. Bawendi, Chem. of Materials 6, 216 (1994).CrossRefGoogle Scholar
  15. 15.
    C. B. Murray, C. Kagan, and M. G. Bawendi, to be published.Google Scholar
  16. 16.
    P. Roussignol, D. Ricard, C. Flytzanis, and N. Neuroth, Phys. Rev. Lett. 62, 312 (1989).CrossRefGoogle Scholar
  17. 17.
    A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, and L. E. Brus, J. Chem. Phys. 89, 4001 (1988).CrossRefGoogle Scholar
  18. 18.
    N. Peyghambarian, B. Fluegel, D. Hulin, A. Migus, M. Joffre, A. Antonetti, S. W. Koch and M. Lindberg, IEEE J. Quantum Electron. 25, 2516 (1989).CrossRefGoogle Scholar
  19. 19.
    M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990).CrossRefGoogle Scholar
  20. 20.
    D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, Phys. Rev. Lett. 72, 2612 (1994).CrossRefGoogle Scholar
  21. 21.
    J. B. Xia, Phys. Rev. B 40, 8500 (1989).CrossRefGoogle Scholar
  22. 22.
    A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, L A. Kudryatsev, T. V. Yazeva, A. F. Rodina, and AL L. Efros, J. Opt. Soc. Am. B 10, 100 (1993).CrossRefGoogle Scholar
  23. 23.
    M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, J. Chem. Phys. 96, 946 (1992).CrossRefGoogle Scholar
  24. 24.
    M. Nirmal, C. B. Murray, and M. G. Bawendi, Phys. Rev. B (1994).Google Scholar
  25. 25.
    M. O’Neil, J. Marohn, and G. McLendon, J. Phys. Chem. 94, 4356 (1990).CrossRefGoogle Scholar
  26. 26.
    A. Eychmüller, A Hässelbarth, L. Katsikas, and H. Weller, Ber. Bunsenges. Phys. Chem. 95, 79 (1991).CrossRefGoogle Scholar
  27. 27.
    M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990).CrossRefGoogle Scholar
  28. 28.
    S. Nomura and T. Kobayashi, Phys. Rev. B 45, 1305 (1992).CrossRefGoogle Scholar
  29. 29.
    Y. R. Wang and C B. Duke, Phys. Rev. B 37, 6417 (1988).CrossRefGoogle Scholar
  30. 30.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. G. Bawendi
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations