Skip to main content

Genetic Determinants of Myocardial Infarction

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 369))

Abstract

A family history of myocardial infarction (MI), especially MI at an early age, is a potent risk factor for coronary artery disease (CAD). The risk increases with the number of first-degree relatives affected and is inversely related to the age at which they became affected (Roncaglioni et al., 1992). While some of this increased risk is due to shared environment, genetic factors appear to predominate (Nora et al., 1980). Monozygotic (identical) twins are significantly more likely to be concordant for CAD than are dizygotic (fraternal) twins (Goldbourt and Neufeld, 1986). Dyslipidemia, diabetes mellitus, hypertension and obesity, the major metabolic risk factors for CAD, are in large measure genetically determined. In addition, a family history of MI confers increased risk in both genders independent of other known risk factors (Colditz et al., 1991; Roncaglioni et al., 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, M.A., 1991, Plasma triglyceride and coronary heart disease, Arterioscl. Thromb. 11:2–14.

    Article  CAS  Google Scholar 

  • Babirak, S.P., Iverius, P.-H., Fujimoto, W.Y., and Brunzell, J.D., 1989, Detection and characterization of the heterozygote state for lipoprotein lipase deficiency, Arterioscl. 9:326–34.

    Article  CAS  Google Scholar 

  • Ballinger, S.W., Shoffner, J.M., Hedaya, E.V. et al., 1992, Maternally transmitted diabetes and deafness associated with a 10.4kb mitochondrial DNA deletion, Nature Genet. 1:11–15.

    Article  CAS  Google Scholar 

  • Bell, G.I., Xiang, K.-S., and Newman, M.V. et al., 1991, Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q., Proc. Natl. Acad. Sci. USA 88:1484–8.

    Article  CAS  Google Scholar 

  • Berg, K., 1992, Lp(a) lipoprotein: An important genetic risk factor for atherosclerosis, in: “Molecular Genetics of Coronary Artery Disease, Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel, 189–207.

    Google Scholar 

  • Bierman, E.L., 1991, Atherosclerosis and other forms of arteriosclerosis, in: “Harrison’s Principles of Internal Medicine,” 12th ed., J.D. Wilson, E. Braunwald, and K.J. Isselbacher et al., eds., McGraw-Hill New York, 992–1001.

    Google Scholar 

  • Boerwinkle, E., Leffert, C.C., Lin, J., Lackner, C., Chiesa, G., and Hobbs, H.H., 1992, Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations, J. Clin. Invest. 90:52–60.

    Article  CAS  Google Scholar 

  • Breslow, J.L., 1989, Familial disorders of high density lipoprotein metabolism, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., CR. Scrivner, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York, 1251–66.

    Google Scholar 

  • Breslow, J.L., 1991, Lipoprotein transport gene abnormalities underlying coronary heart disease susceptibility. Annu. Rev. Med. 42:357–71.

    Article  CAS  Google Scholar 

  • Breslow, J.L., 1993, Transgenic mouse models of lipoprotein metabolism and atherosclerosis, Proc. Natl. Acad. Sci. USA 90:8314–8.

    Article  CAS  Google Scholar 

  • Brinton, E.A., Eisenberg, S., and Breslow, J.L., 1990, A low-fat diet decreases high density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates, J. Clin. Invest. 85:144–51.

    Article  CAS  Google Scholar 

  • Brown, M.S. and Goldstein, J.L., 1992, The hyperlipoproteinemias and other disorders of lipid metabolism, in: “Molecular Genetics of Coronary Artery Disease. Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel.

    Google Scholar 

  • Cambien, F., Poirier, O., and Lecerf, L. et al., 1992, Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction, Nature 359:641–4.

    Article  CAS  Google Scholar 

  • Chait, A. and Brunzell, J.D., 1990, Acquired hyperlipidemia (secondary dyslipoproteinemias), Endocrinol. Metab. Clinics N. Amer. 19:259–78.

    CAS  Google Scholar 

  • Cohen, J.C., Chiesa, G., and Hobbs, H.H., 1993, Sequence polymorphisms in the apolipoprotein(a) gene. Evidence for dissociation between apolipoprotein(a) size and plasma lipoprotein(a) levels, J. Clin. Invest. 91:1630–6.

    Article  CAS  Google Scholar 

  • Colditz, G.A., Rimm, E.B., Giovannucci, E., Stampfer, M.J., Rosner, B., and Willett, W.C., 1991, A prospective study of parental history of myocardial infarction and coronary artery disease in men, Am. J. Cardiol. 67:933–8.

    Article  CAS  Google Scholar 

  • Coresh, J., Svenson, K.L., Beaty, T.H., Kwiterovich, P.O., and Lusis, A.J., 1993, Sib-pair linkage analysis of the lipoprotein lipase gene and lipoprotein levels: The Johns Hopkins Coronary Artery Disease Family Study, Am. J. Hum. Genet. 53:Suppl: Abstract 788.

    Google Scholar 

  • Dammerman, M., Sandkuijl, L.A., Halaas, J.L., Chung, W., and Breslow, J.L., 1993, An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3’ untranslated region polymorphisms, Proc. Nat’l. Acad. Sci. USA 90:4562–6.

    Article  CAS  Google Scholar 

  • DeFronzo, R.A., Bonadonna, R.C., and Ferrannini E., 1992, Pathogenesis of NIDDM: A balanced overview, Diabetes Care 15:318–68.

    Article  CAS  Google Scholar 

  • Despres, J.-P., Moorjani, S., Lupien, P.J., Tremblay, A., Nadeau, A., and Bouchard, C., 1992, Genetic aspects of susceptibility to obesity and related dyslipidemias, Mol. Cell Biochem. 113:151–69.

    Article  CAS  Google Scholar 

  • Diamond, J.M., 1992, Diabetes running wild, Nature 357:362–3.

    Article  CAS  Google Scholar 

  • Froguel, P., Zouali, H., and Vionnet, N. et al., 1993, Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus, N. Eng. J. Med. 328:697–702.

    Article  CAS  Google Scholar 

  • Genest, J.J. Jr., Martin-Munley, S.S., and McNamara, J.R. et al., 1992, Familial lipoprotein disorders in patients with premature coronary artery disease, Circulation 85:2025–33.

    Article  Google Scholar 

  • Ghiselli, G., Schaefer, E.J., Zech, L.A., Gregg, R.E., and Brewer, H.B. Jr., 1982, Increased prevalence of apolipoprotein E4 in Type V hyperlipoproteinemia, J. Clin. Invest. 70:474–7.

    Article  CAS  Google Scholar 

  • Goldbourt, U. and Neufeld, H.N., 1986, Genetic aspects of arteriosclerosis, Arterioscl. 6:357–77.

    Article  CAS  Google Scholar 

  • Goldstein, J.L. and Brown, M.S., 1989, Familial hypercholesterolemia, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., C.R. Scrivner, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York, 1215–50.

    Google Scholar 

  • Groop, L.C., Kankuri, M., and Schalin-Jantti, C., et al., 1993, Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus, N. Eng. J. Med. 328:10–14.

    Article  CAS  Google Scholar 

  • Hixson, J.E., 1991, Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Apolipoprotein E polymorphisms affect atherosclerosis in young males, Arterioscl. Thromb. 11:1237–44.

    Article  CAS  Google Scholar 

  • Jauhiainen, M., Koskinen, P., and Ehnholm, C., et al., 1991, Lipoprotein (a) and coronary heart disease risk: a nested case-control study of the Helsinki Heart Study participants, Atheroscl. 89:59–67.

    Article  CAS  Google Scholar 

  • Jeunemaitre, X., Soubrier, F., and Kotelevtsev, Y.V. et al., 1992, Molecular basis of human hypertension: Role of angiotensinogen, Cell 71:169–80.

    Article  CAS  Google Scholar 

  • Julier, C., Hyer, R.N., and Davies, J. et al., 1991, Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility, Nature 354:155–9.

    Article  CAS  Google Scholar 

  • Kane, J.P. and Havel, R.J., 1989, Disorders of the biogenesis and secretion of lipoproteins containing the apolipoproteins, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., C.R. Scrivner, A.L. Beaudet, W.S. Sly, D. Valle, eds., McGraw-Hill, New York, 1139–64.

    Google Scholar 

  • Kannel, W.B. and McGee, D.L., 1979, Diabetes and cardiovascular disease. The Framingham study, J.A.M.A. 241:2035–8.

    Article  CAS  Google Scholar 

  • Krolewski, A.S., Canessa, M., and Warram, J.H. et al., 1988, Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus, N. Engl. J. Med. 318:140–5.

    Article  CAS  Google Scholar 

  • Kurtz, T. W., 1993, Genetics of essential hypertension, Am. J. Med. 94:77–84.

    Article  CAS  Google Scholar 

  • Leahy, J.L. and Boyd, A.E., III, 1993, Diabetes genes in non-insulin-dependent diabetes mellitus, N. Engl. J. Med 328:56–7.

    Article  CAS  Google Scholar 

  • Lifton, R.P., Dluhy, R.G., and Powers, M. et al., 1992, A chimaeric 11 ß-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension, Nature 355:262–5.

    Article  CAS  Google Scholar 

  • Ma, Y., Zhang, H., Liu, M.-S., Frohlich, J., Brunzell, J.D., and Hayden, M.R., 1993, Type III hyperlipoproteinemia in apo E2/2 homozygotes: Possible role of mutations in the lipoprotein lipase gene, Circulation 88: Suppl:1–179.

    Google Scholar 

  • Mahley, R.W. and Rall, S.C. Jr., 1989, Type III hyperlipoproteinemia (Dysbetalipoproteinemia): The role of apolipoprotein E in normal and abnormal lipoprotein metabolism, in: “The Metabolic Basis of Inherited Disease,” Vol. I. 6th ed., C.R. Scrivner, A.L. Beaudet, W.S. Sly, and D. Valle, eds., McGraw-Hill, New York, 1195–1213.

    Google Scholar 

  • Mark, A.L., 1992, ’syndrome X’: Is it a significant cause of hypertension? Negative, Hosp. Pract. 27: Suppl 1:41–4.

    Google Scholar 

  • Mattock, M.B., Keen, H., and Viberti, G.C. et al., 1988, Coronary heart disease and urinary albumin excretion rate in Type 2 (non-insulin-dependent) diabetic patients, Diabetologia 31:82–7.

    Article  CAS  Google Scholar 

  • Neel, J.V., 1962, Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet. 14:353–62.

    CAS  Google Scholar 

  • Nora, J.J., Lortscher, R.H., Spangler, R.D., Nora, A.H., and Kimberling, W.J., 1980, Genetic-epidemiologic study of early-onset ischemic heart disease, Circulation 61:503–8.

    Article  CAS  Google Scholar 

  • Ohishi, M., Fujii, K., and Minamino, T. et al., 1993, A potent genetic risk factor for restenosis, (Letter.) Nature Genet. 5:324–5.

    Article  CAS  Google Scholar 

  • Pi-Sunyer, F.X., 1993, Medical hazards of obesity, Ann. Intern. Med. 119:655–60.

    CAS  Google Scholar 

  • Price, W.H., Kitchin, A.H., Burgon, P.R.S., Morris, S.W., Wenham, P.R., and Donald, P.M., 1989, DNA restriction fragment length polymorphisms as markers of familial coronary heart disease, Lancet i:1407–11.

    Article  Google Scholar 

  • Reaven, G.M., 1988, Role of insulin resistance in human disease, Diabetes 37:1595–607.

    Article  CAS  Google Scholar 

  • Rees, A., Shoulders, C.C., Stocks, J., Galton, D.J., and Baralle, F.E., 1983, DNA polymorphism adjacent to the human apoprotein AI gene: Relation to hypertriglyceridemia, Lancet i:444–6.

    Article  Google Scholar 

  • Rhoads, G.G., Dahlen, G., Berg, K., Morton, N.E,. and Dannenberg, A.L., 1986, Lp(a) lipoprotein as a risk factor for myocardial infarction, J.A.M.A. 256:2540–4.

    Article  CAS  Google Scholar 

  • Ridker, P.M., Hennekens, C.H., and Stampfer, M.J., 1993a, A prospective study of lipoprotein(a) and the risk of myocardial infarction, J.A.M.A. 270:2195–9.

    Article  CAS  Google Scholar 

  • Ridker, P.M., Gaboury, C.L., Conlin, P.R., Seely, E.W., Williams, G.H., and Vaughan, D.E., 1993b, Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Evidence of a potential interaction between the renin-angiotensin system and fibrinolytic function, Circulation 87:1969–73.

    Article  CAS  Google Scholar 

  • Roncaglioni, M.C., Santoro, L., and D’Avanzo, B., et al., 1992, Role of family history in patients with myocardial infarction. An Italian case-control study, Circulation 85:2065–72.

    Article  CAS  Google Scholar 

  • Shohat, T., Raffel, L.F., Vadheim, C.M., and Rotter, J.I., 1992, Diabetes mellitus and coronary heart disease genetics, in: “Molecular Genetics of Coronary Artery Disease. Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel.

    Google Scholar 

  • Shohat, T., Raffel, L.F., Vadheim, C.M., and Rotter, J.I., 1992, Diabetes mellitus and coronary heart disease genetics, in: “Molecular Genetics of Hypertension. Candidate Genes and Processes in Atherosclerosis,” Monogr. Hum. Genet. Vol. 14, A.J. Lusis, J.I. Rotter, and R.S. Sparkes, eds., Karger, Basel.

    Google Scholar 

  • Shoulders, C.C., Harry, P. J., and Lagrost, L. et al., 1991, Variation at the apo AI/CIII/AIV gene complex is associated with elevated plasma levels of apo CIII, Atheroscl. 87:239–47.

    Article  CAS  Google Scholar 

  • Sorrentino, M.J., Vielhauer, C., Eisenbart, J.D., Fless, G.M., Scanu, A.M., and Feldman T. 1992, Plasma lipoprotein(a) protein concentration and coronary artery disease in black patients compared with white patients, Am. J. Med. 93:658–62.

    Article  CAS  Google Scholar 

  • Stamler, J., 1993, Epidemic obesity in the United States, Arch Intern Med 153:1040–3.

    Article  CAS  Google Scholar 

  • Steiner, D.F., Tager, H.S., Chan, S.J., Nanjo, K., Sanke, T., and Rubenstein, A.H., 1990, Lessons learned from molecular biology of insulin-gene mutations, Diabetes Care 13:600–9.

    Article  CAS  Google Scholar 

  • Stunkard, A.J., Harris, J.R., Pedersen, N.L., and McClearn, G.E., 1990, The body-mass index of twins who have been reared apart, N. Engl. J. Med. 322:1483–7.

    Article  CAS  Google Scholar 

  • Tall, A.R., 1993, Plasma cholesterol ester transfer protein, J. Lipid Res. 34:1255–74.

    CAS  Google Scholar 

  • Taylor, S.I., 1992, Lilly Lecture: Molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene, Diabetes 41:1473–90.

    Article  CAS  Google Scholar 

  • Thorsby, E. and Ronningen, K.S., 1993, Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to Type 1 (insulin-dependent) diabetes mellitus, Diabetologia 36:371–7.

    Article  CAS  Google Scholar 

  • Van den Ouweland, J.M.W., Lemkes, H.H.P.J., and Ruitenbeek, W. et al., 1992, Muation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness, Nature Genet. 1:368–71.

    Article  Google Scholar 

  • Ward, K., Hata, A., and Jeunemaitre, X. et al., 1993, A molecular variant of angiotensinogen associated with preeclampsia, Nature Genet. 4:59–61.

    Article  CAS  Google Scholar 

  • Williams, G.H., 1991, Hypertensive vascular disease, in: “Harrison’s Principles of Internal Medicine,” 12th ed., J.D. Wilson, E. Braunwald, and K.J. Isselbacher et al., eds., McGraw-Hill, New York, 1001–15.

    Google Scholar 

  • Williams, G.H. and Hollenberg, N.K., 1993, Derangements in renin-angiotensin regulation in the pathogenesis of hypertension, in: “Cellular and Molecular Biology of The Renin-Angiotensin System,” M.K. Raizada, M.I. Phillips, and Sumners, eds., CRC Press, Boca Raton, 515–36.

    Google Scholar 

  • Wilson, D.E., Emi, M., and Iverius, P.-H. et al., 1990, Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation, J. Clin. Invest. 86:735–50.

    Article  CAS  Google Scholar 

  • Zannis, V.I., Kardassis, D., and Zanni, E.E., 1993, Genetic mutations affecting human lipoproteins, their receptors, and their enzymes, in: “Advances in Human Genetics,” Vol. 21. 145–319, H. Harris, K. Hirschhorn eds, Plenum Press, New York.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breslow, J.L., Dammerman, M. (1995). Genetic Determinants of Myocardial Infarction. In: Longenecker, J.B., Kritchevsky, D., Drezner, M.K. (eds) Nutrition and Biotechnology in Heart Disease and Cancer. Advances in Experimental Medicine and Biology, vol 369. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1957-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1957-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5804-6

  • Online ISBN: 978-1-4615-1957-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics