Nutrients, Signal Transduction and Carcinogenesis

  • Steven H. Zeisel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 369)


Choline-deficiency is an excellent model system in which to study how a nutrient can influence cell signaling and cause cancer. Choline is universally distributed in all cells. Choline’s most important functions are that it is needed to form acetylcholine (a major neurotransmitter), it is needed as a methyl donor, and it is a precursor for the biosynthesis of membrane phospholipids (including phosphatidylcholine, lysophosphatidylcholine, choline plasmalogen, platelet activating factor and sphingomyelin) (Zeisel, 1990).


Choline Deficiency Methionine Adenosyl Transferase Secondary Primary Malignancy Plasma Choline Choline Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes, J. C., Eckel, S., Siegel, M. I., Egan, R. W. and Billah, M. M., 1989, Phospholipase D in homogenates from HL-60 granulocytes: Implications of calcium and G protein control, Biochem. Biophys. Res. Commun. 163, 657–664.CrossRefGoogle Scholar
  2. Asaoka, Y., Oka, M., Yoshida, K., Sasaki, Y. and Nishizuka, Y., 1992, Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase Proc. Nat.l Acad. Sci.,U S A, 89, 6447–6451.CrossRefGoogle Scholar
  3. Baxter, J. H., 1947, A study of hemorrhagic-kidney syndrome of choline deficiency, J. Nutr. 34, 333.Google Scholar
  4. Berridge, M. J., 1989, Inositol trisphosphate, calcium, lithium, and cell signaling, JAMA 262, 1834–1841.CrossRefGoogle Scholar
  5. Best, C. H. and Hartroft, W. S., 1949, Symposium on nutrition in preventative medicine: Nutrition, renal lesions and hypertension, Fed. Proc. 8, 610.Google Scholar
  6. Best, C. H. and Huntsman, M. E., 1932, The effects of the components of lecithin upon the deposition of fat in the liver, J. Physiol. 75, 405–412.Google Scholar
  7. Best, C. H. and Huntsman, M. E., 1935, Effect of choline on liver fat of rats in various states of nutrition, J. Physiol. 83, 255–274.Google Scholar
  8. Besterman, J. M., Duronio, V. and Cuatrecasas, P., 1986, Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger, Proc. Natl. Acad. Sci. USA 83, 6785–6789.CrossRefGoogle Scholar
  9. Blair, R. and Newsome, F., 1985, Involvement of water-soluble vitamins in diseases of swine, J. Animal Sci. 60, 1508–1517.Google Scholar
  10. Blusztajn, J. K. and Zeisel, S. H., 1989, 1,2-sn-diacylglycerol accumulates in choline-deficient liver, A possible mechanism of hepatic carcinogenesis via alteration in protein kinase activity? FEBS Lett. 243, 267–270.CrossRefGoogle Scholar
  11. Buchman, A. L., Dubin, M., Jenden, D., Moukarzel, A., Roch, M. H., Rice, K., Gornbein, J., Ament, M. E. and Eckhert, C. D., 1992, Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients, Gastroenterology 102, 1363–1370.Google Scholar
  12. Buchman, A. L., Moukarzel, A., Jenden, D. J., Roch, M., Rice, K. and Ament, M. E., 1993, Low plasma free choline is prevalent in patients receiving long term parenteral nutrition and is associated with hepatic aminotransferase abnormalities, Clin. Nutr. 12, 33–37.CrossRefGoogle Scholar
  13. Byrd, R., 1985, Late effects of treatment of cancer in children. Pediatr. Clin. N. Am. 32, 835–856.Google Scholar
  14. Cacace, A. M., Guadagno, S. N., Krauss, R. S., Fabbro, D. and Weinstein, I., 1993, The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts, Oncogene 8, 2095–2104.Google Scholar
  15. Caniggia, A., 1950, Effect of choline on hemopoiesis, Haematologica 34, 625–627.Google Scholar
  16. Chandar, N., Amenta, J., Kandala, J. C. and Lombardi, B., 1987, Liver cell turnover in rats fed a choline-devoid diet. Carcinogenesis 8, 669–673.CrossRefGoogle Scholar
  17. Chandar, N. and Lombardi, B., 1988, Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcinogenesis 9, 259–263.CrossRefGoogle Scholar
  18. Chang, C. H. and Jensen, L. S., 1975, Inefficacy of carnitine as a substitute for choline for normal reproduction in Japanese quail. Poultry Sci. 54, 1718–1720.CrossRefGoogle Scholar
  19. Chawla, R. K., Wolf, D. C., Kutner, M. H. and Bonkovsky, H. L., 1989, Choline may be an essential nutrient in malnourished patients with cirrhosis, Gastroenterology 97, 1514–1520.Google Scholar
  20. Conricode, K. M., Brewer, K. A. and Exton, J. H., 1992, Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism, J. Biol. Chem. 261, 7199–7202.Google Scholar
  21. daCosta, K., Cochary, E. F., Blusztajn, J. K., Garner, S. and Zeisel, S. H., 1993, Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline deficient rats, J. Biol. Chem. 268, 2100–2105.Google Scholar
  22. Diaz-Laviada, I., Larrodera, P., Diaz-Meco, M., Cornet, M. E., Guddal, P. H., Johansen, T. and Moscat, J., 1990, Evidence for a role of phosphatidylcholine-hydrolysing phospholipase C in the regulation of protein kinase C by ras and src oncogenes. Embo J. 9, 3907–3912.Google Scholar
  23. Dizik, M., Christman, J. K. and Wainfan, E., 1991, Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet, Carcinogenesis 12, 1307–1312.CrossRefGoogle Scholar
  24. Exton, J. H., 1990, Signaling through phosphatidylcholine breakdown. J. Biol. Chem. 265, 1–4.Google Scholar
  25. Fairbanks, B. W. and Krider, J. L., 1945, Significance of B vitamins in swine nutrition, N. Am. Vet. 26, 18–23.Google Scholar
  26. FASEB Life Sciences Research Office, 1975, Evaluation of the health aspects of choline chloride and choline bitartrate as food ingredients, Report # PB-223 845/9, Bureau of Foods, Food and Drug Administration, Department of Health, Education, and Welfare, Washington DC.Google Scholar
  27. FASEB Life Sciences Research Office, 1981, Effects of Consumption of choline and lecithin on neurological and cardiovascular systems, Report # PB-82-133257, Bureau of Foods, Food and Drug Administration, Department of Health, Education, and Welfare, Washington DC.Google Scholar
  28. Finkelstein, J. D., Martin, J. J. and Harris, J., 1988, Methionine metabolism in mammals. The methionine-sparing effect of cystine, J. Biol. Chem. 263, 11750–11754.Google Scholar
  29. Finkelstein, J. D., Martin, J. J., Harris, J. and Kyle, W. E., 1982, Regulation of the betaine content of rat liver, Arch. Biochem. Biophys. 218, 169–173.CrossRefGoogle Scholar
  30. Ghoshal, A. K., Ahluwalia, M. and Farber, E., 1983, The rapid induction of liver cell death in rats fed a choline-deficient methionine-low diet, Am. J. Pathol. 113, 309–314.Google Scholar
  31. Griffith, W. H. and Wade, N. J., 1939, The occurance and prevention of hemorrhagic degeneration in young rats on a low choline diet, J. Biol. Chem. 131, 567–573.Google Scholar
  32. Handler, P. and Bernheim, F., 1949, Choline deficiency in the hamster, Proc. Soc. Exptl. Med. 72, 569.Google Scholar
  33. Hershey, J. M. and Soskin, S., 1931, Substitution of “lecithin” for raw pancreas in a diet of depancreatized dog, Am. J. Physiol. 93, 657–658.Google Scholar
  34. Hoffbauer, F. W. and Zaki, F. G., 1965, Choline deficiency in the baboon and rat compared, Arch. Path. 79, 364–369.Google Scholar
  35. Hunter, T., 1991, Cooperation between oncogenes, Cell 64, 249–270.CrossRefGoogle Scholar
  36. Jukes, T. H., 1940, The prevention of perosis by choline, J. Biol. Chem. 134, 789–792.Google Scholar
  37. Kato, M., Kawai, S. and Takenawa, T., 1989, Defect in phorbol acetate-induced translocation of diacylglycerol kinase in erbB-transformed fibroblast cells, Febs Lett. 247, 247–250.CrossRefGoogle Scholar
  38. Kratzing, C. C. and Perry, J. J., 1971, Hypertension in young rats following choline deficiency in maternal diets, J. Nutr. 101, 1657–1661.Google Scholar
  39. Krauss, R., Housey, G., Johnson, M. and Weinstein, I. B., 1989, Disturbances in growth control and gene expression in a C3H/10T1/2 cell line that stably overproduces protein kinase Oncogene 4, 991–998.Google Scholar
  40. Liscovitch, M., 1992, Crosstalk among multiple signal-activated phospholipases, Trends in Biochemical Sciences 17, 393–399.CrossRefGoogle Scholar
  41. Locker, J., Reddy, T. V. and Lombardi, B., 1986, DNA methylation and hepatocarcinogenesis in rats fed a choline devoid diet, Carcinogenesis 7, 1309–1312.CrossRefGoogle Scholar
  42. Lombardi, B., 1971, Effects of choline deficiency on rat hepatocytes, Fed. Proc. 30, 139–142.Google Scholar
  43. Lombardi, B., Pani, P. and Schlunk, F. F., 1968, Choline-deficiency fatty liver: impaired release of hepatic triglycerides, J. Lipid Res. 9, 437–446.Google Scholar
  44. Megidish, T. and Mazurek, N., 1989, A mutant protein kinase C that can transform fibroblasts, Nature 342, 807–811.CrossRefGoogle Scholar
  45. Meldrum, E., Parker, P. J. and Carozzi, A., 1991, The Ptd-Ins-PLC superfamily and signal transduction, Biochim. Biophys. Acta 1092, 49–71.CrossRefGoogle Scholar
  46. Michael, U. F., Cookson, S. L., Chavez, R. and Pardo, V., 1975, Renal function in the choline deficient rat, Proc. Soc. Exp. Biol. Med. 150, 672–676.Google Scholar
  47. Newberne, P. M. and Rogers, A. E., 1986, Labile methyl groups and the promotion of cancer, Ann. Rev. Nutr. 6, 407–432.CrossRefGoogle Scholar
  48. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233, 305–312.CrossRefGoogle Scholar
  49. Nishizuka, Y., 1992, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C, Science 258, 607–614.CrossRefGoogle Scholar
  50. Persons, D. A., Wilkison, W. O., Bell, R. M. and Finn, O. J., 1988, Altered growth regulation and enhanced tumorigenicity of NIH 3T3 Fibroblasts transfected with protein kinase C-1 DNA, Cell 52, 447–458.CrossRefGoogle Scholar
  51. Pomfret, E. A., daCosta, K. and Zeisel, S. H., 1990, Effects of choline deficiency and methotrexate treatment upon rat liver, J. Nutr. Biochem. 1, 533–541.CrossRefGoogle Scholar
  52. Price, B. D., Morris, J. D., Marshall, J. and Hall, A., 1989, Stimulation of phosphatidylcholine hydrolysis, diacylglycerol release, and arachidonic acid production by oncogenic ras is a consequence of protein kinase activation. J. Biol. Chem. 264, 16638–16643.Google Scholar
  53. Qian, Z. and Drewes, L. R., 1990. A novel mechanism for acetylcholine to generate diacylglycerol in brain, J. Biol. Chem. 265, 3607–3610.Google Scholar
  54. Rogers, A. E., Akhtar, R. and Zeisel, S. H., 1990, Procarbazine Carcinogenicity in methotrexate-treated or lipotrope-deficient male rats, Carcinogenesis 11, 1491–1495.CrossRefGoogle Scholar
  55. Rushmore, T., Lim, Y., Farber, E. and Ghoshal, A., 1984, Rapid lipid peroxidation in the nuclear fraction of rat liver induced by a diet deficient in choline and methionine, Cancer Lett. 24, 251–255.CrossRefGoogle Scholar
  56. Sasaki, Y., Asaoka, Y. and Nishizuka, Y., 1993, Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids: Subspecies difference, Febs Lett 320, 47–51.CrossRefGoogle Scholar
  57. Selhub, J., Seyoum, E., Pomfret, E. A. and Zeisel, S. H., 1991, Effects of choline deficiency and methotrexate treatment upon liver folate content and distribution, Cancer Res 51, 16–21.Google Scholar
  58. Sheard, N. F., Tayek, J. A., Bistrian, R., Blackburn, G. L. and Zeisel, S. H., 1986, Plasma choline concentration in humans fed parenterally, Am. J. Clin. Nutr. 43, 219–24.Google Scholar
  59. Shinozuka, H. and Lombardi, B., 1980, Synergistic effect of a choline-devoid diet and phenobarbital in promoting the emergence of foci of g-glutamyltranspeptidase-positive hepatocytes in the liver of carcinogen-treated rats, Cancer Res. 40, 3846–3849.Google Scholar
  60. Stabel, S. and Parker, P. J., 1991, Protein kinase Pharmac. Ther. 51, 71–95.CrossRefGoogle Scholar
  61. Tani, H., Suzuki, S., Kobayashi, M. and Kotake, Y., 1967, The physiological role of choline in guinea pigs, J. Nutr. 92, 317–324.Google Scholar
  62. Taylor, W. and Marshall, I., 1992, Calcium and inositol 1,4,5-trisphosphate receptors: A complex relationship, Trends Biochem Sci 17, 403–407.CrossRefGoogle Scholar
  63. Wakelam, M. J., Cook, S. J., Curde, S., Plamer, S. and Plevin, R., 1991, Regulation of the hydrolysis of phosphatidylcholine in Swiss 3T3 cells, Biochem. Soc. Transactions 19, 321–324.Google Scholar
  64. Weinstein, I. B., 1990, The role of protein kinase C in growth control and the concept of carcinogenesis as a progressive disorder in signal transduction, Adv. Second Messenger Phosphoprotein Res. 24, 307–316.Google Scholar
  65. Wilkison, W. O., Sandgren, E. P., Palmiter, R. D., Brinster, R. L. and Bell, R. M., 1989, Elevation of 1,2-diacylglycerol in ras-transformed neonatal liver and pancreas of transgenic mice, Oncogene 4, 625–628.Google Scholar
  66. Wolfman, A., Wingrove, T. G., Blackshear, P. J. and Macara, I. G., 1987, Down-regulation of protein kinase and of an endogenous 80-kDa substrate in transformed fibroblasts, J. Biol. Chem. 262, 16546–16552.Google Scholar
  67. Yao, Z. M. and Vance, D. E., 1988, The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes, J. Biol. Chem. 263, 2998–3004.Google Scholar
  68. Yao, Z. M. and Vance, D. E., 1989, Head group specificity in the requirement of phosphatidylcholine biosynthesis for very low density lipoprotein secretion from cultured hepatocytes, J. Biol. Chem. 264, 11373–11380.Google Scholar
  69. Yao, Z. M. and Vance, D. E., 1990, Reduction in VLDL, but not HDL, in plasma of rats deficient in choline, Biochem Cell Biol 68, 552–528.CrossRefGoogle Scholar
  70. Zeisel, S. H., 1981, Dietary choline: biochemistry, physiology, and pharmacology, Ann. Rev. Nutr. 1, 95–121.CrossRefGoogle Scholar
  71. Zeisel, S. H., 1990, Biological consequences of choline deficiency in: “Choline Metabolism and Brain Function”, “Nutrition and the Brain”, Vol. 8, eds., R.V. Wurtman and J.V. Wurtman, Raven Press, New York.Google Scholar
  72. Zeisel, S. H., 1990, Choline deficiency, J. Nutr. Biochem. 1, 332–349.CrossRefGoogle Scholar
  73. Zeisel, S. H., 1993, Choline phospholipids: signal transduction and carcinogenesis, FASEB J. 7, 551–557.Google Scholar
  74. Zeisel, S. H., DaCosta, K.-A., Franklin, P. D., Alexander, E. A., Lamont, J. T., Sheard, N. F. and Beiser, A., 1991, Choline, an essential nutrient for humans, FASEB J 5, 2093–2098.Google Scholar
  75. Zeisel, S. H., Growdon, J. H., Wurtman, R. J., Magil, S. G. and Logue, M., 1980, Normal plasma choline responses to ingested lecithin. Neurology 30, 1226–1229.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Steven H. Zeisel
    • 1
  1. 1.Department of Nutrition, School of Public Health and School of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations