Hydrophobic and Charge Effects in the Partitioning of Solutes in Aqueous Two-Phase Systems

  • Mark A. Eiteman

Abstract

Dobry and Boyer-Kawenoki1 in 1947 were the first to provide a “methodical study of compatibility in polymer solutions” that had been noted in the study of paints and varnishes. They found that a solution of two polymers dissolved in a single solvent (prepared by mixing two single-polymer solutions) often formed two liquid phases. In their survey, Dobry and Boyer-Kawenoki also noted that each phase in such a system contained principally, but not exclusively, one of the polymers. They eloquently theorized the nature of phase separation, stating, “in a solution of [polymer] A enough free space is available for A molecules, although there is none for [polymer] B molecules.”

Keywords

Sodium Chloride Glycine MeOH Alanine Tryptophan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Dobry, and F. Boyer-Kawenoki, Phase separation in polymer solutions, J. Polymer Sci., 2:90 (1947).CrossRefGoogle Scholar
  2. 2.
    P.-Å. Albertsson, Partition of proteins in liquid polymer-polymer two-phase systems, Nature, 182:709 (1958).CrossRefGoogle Scholar
  3. 3.
    H. Cabezas Jr., J. D. Evans, and D. C. Szlag, A statistical mechanical model of aqueous two-phase systems, Fluid Phase Equil., 53:453 (1989).CrossRefGoogle Scholar
  4. 4.
    H. Cabezes Jr., M. Kabiri-Badr, and D. C. Szlag, Statistical thermodynamics of phase separation and ion partitioning in aqueous two-phase systems, Bioseparation, 1:227–233 (1990).Google Scholar
  5. 5.
    H. Cabezas Jr., J. D. Evans, and D. C. Szlag, Statistical thermodynamics of aqueous two-phase systems, in: “Downstream Processing and Bioseparation,” ACS Symposium Series 419, J.-F. P. Hamel, J. B. Hunter, and S. K. Sidkar, eds., American Chemical Society, Washington, DC (1990).Google Scholar
  6. 6.
    J. N. Baskir, T. A. Hatton, and U. W. Suter, Thermodynamics of the separation of biomaterials in two-phase aqueous polymer systems: effects of the phase-forming polymers, Macromolecules, 20:1300 (1987).CrossRefGoogle Scholar
  7. 7.
    C. H. Kang, and S. I. Sandler, Phase behavior of aqueous two-polymer systems, Fluid Phase Equil., 38:245 (1987).CrossRefGoogle Scholar
  8. 8.
    C. H. Kang, and S. I. Sandler, A thermodynamic model for two-phase aqueous polymer systems, Biotechnol. Bioeng., 32:1158 (1988).CrossRefGoogle Scholar
  9. 9.
    R. S. King, H. W. Blanch, and J. M. Prausnitz, Molecular thermodynamics of aqueous two-phase systems for bioseparations, AIChE J., 34:1585 (1988).CrossRefGoogle Scholar
  10. 10.
    C. A. Haynes, H. W. Blanch, and J. M. Prausnitz, Separation of protein mixtures by extraction: thermodynamic properties of aqueous two-phase polymer systems containing salts and proteins, Fluid Phase Equil., 53:463 (1991).CrossRefGoogle Scholar
  11. 11.
    D. Forciniti, and C. K. Hall, Theoretical treatment of aqueous two-phase extraction by using virial expansions, in: “Downstream Processing and Bioseparation,” ACS Symposium Series 419, J.-F. P. Hamel, J. B. Hunter, and S. K. Sidkar, eds., American Chemical Society, Washington, DC (1990).Google Scholar
  12. 12.
    N. L. Abbott, D. Blankschtein, and T. A. Hatton, Protein partitioning in two-phase aqueous polymer systems. 1. Novel physical pictures and scaling-thermodynamic formulation, Macromolecules, 24:4334 (1991).CrossRefGoogle Scholar
  13. 13.
    Y. Guan, T. E. Treffry, and T. H. Lilley, Application of a statistical geometrical theory to aqueous two-phase systems, J. Chromatogr. A, 668:31 (1994).CrossRefGoogle Scholar
  14. 14.
    C. A. Haynes, F. J. Benitez, H. W. Blanch, and J. M. Prausnitz, Application of integral-equation theory to aqueous two-phase partitioning systems, AIChE J., 39:1539 (1993).CrossRefGoogle Scholar
  15. 15.
    J. N. Baskir, T. A. Hatton, and U. W. Suter, Termodynamics of the partitioning of biomaterials in two-phase aqueous polymer systems: composition of lattice model to experimental data, J. Phys. Chem., 93:2111 (1989).CrossRefGoogle Scholar
  16. 16.
    D. R. Baughman, and Y. A. Liu, An expert network for extractive bioseparations in aqueous two-phase systems: an efficient strategy for experimental design and process development, American Chemical Society, San Diego, 1994.Google Scholar
  17. 17.
    V. P. Shanbhag, and C.-G. Axelsson, Hydrophobic interaction determined by partition in aqueous two-phase systems, Eur. J. Biochem., 60:17 (1975).CrossRefGoogle Scholar
  18. 18.
    M. A. Eiteman, and J. L. Gainer, Peptide hydrophobicity and partitioning in poly(ethylene glycol)/magnesium sulfate aqueous two-phase systems, Biotechnol. Prog. 6:479 (1990).CrossRefGoogle Scholar
  19. 19.
    M. A. Eiteman, and J. L. Gainer, A model for the prediction of partition coefficients in aqueous two-phase systems, Bioseparation, 2:31 (1991).Google Scholar
  20. 20.
    P.-Å. Albertsson, A. Cajarville, D. E. Brooks, and F. Tjerneld, Partition of proteins in aqueous polymer two-phase systems and the effect of molecular weight of the polymer, Biochim. Biophys. Acta 926:87 (1987).CrossRefGoogle Scholar
  21. 21.
    D. Forciniti, C. K. Hall, and M.-R. Kula, Protein partitioning at the isoelectric point: influence of polymer molecular weight and concentration and protein size, Biotechnol. Bioeng., 38:986 (1991).CrossRefGoogle Scholar
  22. 22.
    D. Forciniti, C. K. Hall, and M.-R. Kula, Influence of polymer molecular weight and temperature on phase composition in aqueous two-phase systems, Fluid Phase Equil., 61:243 (1991).CrossRefGoogle Scholar
  23. 23.
    P.-Å. Albertsson, “Partition of Cell Particles and Macromolecules,” Wiley, New York (1986).Google Scholar
  24. 24.
    P.-Å. Albertsson, S. Sasakawa, and H. Walter, Cross partition and isoelectric points of proteins, Nature, 228:1329 (1970).CrossRefGoogle Scholar
  25. 25.
    H. Walter, S. Sasakawa, and P.-Å. Albertsson, Cross-partition of proteins. Effect of ionic composition and concentration, Biochemistry, 11:3880 (1972).CrossRefGoogle Scholar
  26. 26.
    C. L. DeLigny, and W. J. Gelsema, On the influence of pH and salt composition on the partition of polyelectrolytes in aqueous polymer two-phase systems, Separ. Sci. Technol., 17:375 (1982).CrossRefGoogle Scholar
  27. 27.
    M. A. Eiteman, and J. L. Gainer, Predicting partition coefficients in poly(ethylene glycol)/potassium phosphate aqueous two-phase systems, J. Chromatog., 586:341 (1991).CrossRefGoogle Scholar
  28. 28.
    M. A. Eiteman, and J. L. Gainer, The effect of the pH difference between phases on partitioning in poly(ethylene glycol)/phosphate aqueous two-phase systems, Chem. Eng. Commun., 105:171 (1991).CrossRefGoogle Scholar
  29. 29.
    M. A. Eiteman, Partitioning of charged solutes in poly(ethylene glycol)/potassium phosphate aqueous two-phase systems, Sep. Sci. Technol., 29:685 (1994).CrossRefGoogle Scholar
  30. 30.
    M. A. Eiteman, Predicting partition coefficients of multi-charged solutes in aqueous two-phase systems, J. Chromatogr. A, 668:21 (1994).CrossRefGoogle Scholar
  31. 31.
    S. Bamberger, G. V. F. Seaman, J. A. Brown, and D. E. Brooks, The partition of sodium phosphate and sodium chloride in aqueous dextran poly(ethylene glycol) two-phase systems, J. Colloid Inter. Sci., 99:187 (1984).CrossRefGoogle Scholar
  32. 32.
    B. Yu. Zaslaysky, L. M. Miheeva, G. Z. Gasanova, and A. U. Mahmudov, Influence of inorganic electrolytes on partitioning of non-ionic solutes in an aqueous dextran-poly(ethylene glycol) biphasic system, J. Chromatogr., 392:95 (1987).CrossRefGoogle Scholar
  33. 33.
    O. Cascone, B. A. Andrews, and J. A. Asenjo, Partitioning and purification of thaumatin in aqueous two-phase systems, Enzyme Microb. Technol., 13:629 (1991).CrossRefGoogle Scholar
  34. 34.
    G. Johansson, Effects of different ions on the partitioning of proteins in an aqueous dextranpoly(ethylene glycol) two-phase system, Proc. International Solvent Extraction Conf., Soc. of Chem. Ind., The Hague, 2:928 (1971).Google Scholar
  35. 35.
    A. S. Schmidt, A. M. Ventom, and J. A. Asenjo, Partitioning and purification of a-amylase in aqueous two-phase systems, Enzyme Microb. Technol., 16:131 (1994).CrossRefGoogle Scholar
  36. 36.
    C.-K. Lee, and S. I. Sandler, Vancomycin partitioning in aqueous two-phase systems: effects of pH, salts, and an affinity ligand, Biotechnol. Bioeng., 35:408 (1990).CrossRefGoogle Scholar
  37. 37.
    A. D. Diamond, and J. T. Hsu, Fundamental Studies of Biomolecule Partitioning in Aqueous Two-Phase Systems, Biotechnol. Bioeng., 34:1000 (1989).CrossRefGoogle Scholar
  38. 38.
    R. F. Rekker, and H. M. de Kort, The hydrophobic fragmental constant; an extension to a 1000 data point set, Eur. J. Med. Chem. Chim. Therapeut., 14:479 (1979).Google Scholar
  39. 39.
    M. A. Eiteman, C. Hassinen, and A. Veide, A mathematical model to predict the partition of peptides and peptide-modified proteins in aqueous two-phase systems, Biotechnol. Prog., in press (1994).Google Scholar
  40. 40.
    B. Skoog, Determination of polyethylene glycols 4000 and 6000 in plasma protein preparations. Vox. Sang., 37:345 (1970).CrossRefGoogle Scholar
  41. 41.
    Y. Nozaki, and C. Tanford, The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions, J. Biol. Chem., 246:2211 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark A. Eiteman
    • 1
  1. 1.Department of Biological and Agricultural Engineering Driftmier Engineering CenterUniversity of GeorgiaAthensUSA

Personalised recommendations