Mouse Strain Differences in in vivo and in vitro Immunosuppressive Effects of Opioids

  • Toby K. Eisenstein
  • Joseph J. MeisslerJr.
  • Jeanine L. Bussiere
  • Thomas J. Rogers
  • Ellen B. Geller
  • Martin W. Adler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 373)


We have previously demonstrated that subcutaneous (s.c.) implantation of a 75-mg morphine pellet in a variety of mouse strains (including C3HeB/FeJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J bgJ/bgJ and C57BL/6J bgJ/+ [Beige homozygous and heterologous mice]) suppresses the primary in vitro plaque-forming cell (PFC) response to sheep red blood cells (SRBCs), when spleen cells are harvested 48 hours after drug administration (1, 2). Involvement of opioid receptors in the immunosuppression is shown by two observations: (i) simultaneous implantation of a naltrexone pellet blocks the morphine-induced immunosuppression in C3H lineage mice, and (ii) morphine does not suppress the CXBK/By mouse strain, which is deficient in μ opioid receptors (1). While this evidence clearly supports the involvement of classical opioid receptors in C3H lineage mice, these in vivo studies cannot rule out a role for the hypothalamic-pituitary-adrenal (HPA) axis or for other mediators from other systems participating in the observed immunosuppression (3–5).


Mouse Strain Opioid Receptor Spleen Cell Immunosuppressive Effect Human Peripheral Blood Mononuclear Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bussiere, J.L., Adler, M.W., Rogers, T.J., & Eisenstein, T.K. (1992). Differential effects of morphine and naltrexone on the antibody response in various mouse strains. Immunopharmacol. Immunotoxicol. 14. 657–673.PubMedCrossRefGoogle Scholar
  2. 2.
    Bussiere, J.L., Adler, M.W., Rogers, T.J., & Eisenstein, T.K. (1992) Effects of in vivo morphine treatment on antibody responses in C57BL/6 bgJ/bgJ (beige) mice. Life Sci. 52, 43–48.Google Scholar
  3. 3.
    Bryant, H.U., Bernton, E.W., Kenner, J.R., & Holaday, J.W. (1991). Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology 128, 3253–3258.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr, D.J.J., Gebhardt, B.M., & Paul, D. (1993). Alpha adrenergic and Mu-2 opioid receptors are involved in morphine-induced suppression of splenocyte natural killer activity. J. Pharmacol. Exp. Ther. 264, 1179–1186.PubMedGoogle Scholar
  5. 5.
    Hernandez, M.C., Flores, L.R., & Bayer, B.M. (1993). Immunosuppression by morphine is mediated by central pathways. J. Pharmacol. Exp. Ther. 267, 1336–1341.PubMedGoogle Scholar
  6. 6.
    Taub, D.D., Eisenstein, T.K., Geller, E.B., Adler, M.W., & Rogers, T.J. (1991). Immunomodulatory activity of IA- and x-selective opioid agonists. Proc. Natl. Acad. Sci. U.S.A. 88, 360–364.PubMedCrossRefGoogle Scholar
  7. 7.
    Pruett, S.B., Han, Y.-C., & Fuchs, B.A. (1992). Morphine suppresses primary humoral immune responses by a predominantly indirect mechanism. J. Pharmacol. Exp. Ther. 262, 923–928.PubMedGoogle Scholar
  8. 8.
    Handbook on Genetically Standardized JAX Mice, 4th Edition (1991), The Jackson Laboratory, Bar Harbor, ME; and Personal Communication, Kim Cassidy (1994), Biological Testing Branch, NCI, Frederick, MD.Google Scholar
  9. 9.
    Wybran, J., Appelboom, T., Famaey, J.-P., & Govaerts, A. (1979). Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J. Immunol. 123, 1068–1070.PubMedGoogle Scholar
  10. 10.
    Donahoe, R.M., Bueso-Ramos, C., Donahoe, F., Madden, J.J., & Falek, A. (1987). Mechanistic implications of the findings that opiates and other drugs of abuse moderate T-cell-surface receptors and antigenic markers. Ann. N.Y. Acad. Sci. 496, 711–717.PubMedCrossRefGoogle Scholar
  11. 11.
    Donahoe, R.M., Bueso-Ramos, C., Falek, A., McClure, H., & Nicholson, J.K.A. (1988). Comparative effects of morphine on leukocytic antigenic markers of monkeys and humans. J. Neurosci. Res. 19, 157–165.PubMedCrossRefGoogle Scholar
  12. 12.
    Peterson, P.K., Sharp, B., Gekker, G., Brummitt, C., & Keane, W.F. (1987). Opioid-mediated suppression of interferon-γ production by cultured peripheral blood mononuclear cells. J. Clin. Invest. 80, 824–831.PubMedCrossRefGoogle Scholar
  13. 13.
    Chao, C.C., Molitor, T.W., Close, K., Hu, S., & Peterson, P.K. (1993). Morphine inhibits the release of tumor necrosis factor in human peripheral blood mononuclear cell cultures. Int. J. hnmunopharmac. 15, 447–453.CrossRefGoogle Scholar
  14. 14.
    Perez-Castrillon, J.-L., Perez-Arellanos, J.-L., Carcia-Palomo, J.-D., Jimeniz-Lopez, A., & De Castro, S. (1992). Opioids depress in vitro human monocyte chemotaxis. Immunopharmacology 23, 57–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Peterson, P.K., Sharp, B., Gekker, G., Brummitt, C., & Keane, W.F. (1987). Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory activity. J. Immunol. 138, 3907–3912.PubMedGoogle Scholar
  16. 16.
    Chao, C.C., Hu, S., Molitor, T.W., Zhou, Y., Murtaugh, M.P., Tsang, M., & Peterson, P.K. (1992). Morphine potentiates transforming growth factor-13 release from human peripheral blood mononuclear cell cultures. J. Pharmacol. Exp. Ther. 262, 19–24.PubMedGoogle Scholar
  17. 17.
    Cassellas, A.M., Guardioloa, H., & Renaud, F.I. (1991). Inhibition by opioids of phagocytosis in peritoneal macrophages. Neuropeptides 18, 35–40.CrossRefGoogle Scholar
  18. 18.
    Szabo, I., Rojavin, M., Bussiere, J.L., Eiscnstein, T.K., Adler, M.W., & Rogers, T.J. (1993). Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J. Pharmacol. Exp. Ther. 267, 703–706.PubMedGoogle Scholar
  19. 19.
    Bidlack, J.M., Saripalli, L.D., & Lawrence, D.M.P. (1992). κ-opioid binding sites on a murine lymphoma cell line. Eur. J. Pharmacol. 227, 256–265.Google Scholar
  20. 20.
    Carr, D.J.J., Kim, C.-H., DeCosta, B.R., Jacobson, A.E., Rice, K.C., & Blalock, J.E. (1988). Evidence for a x-class opioid receptor on cells of the immune system. Cell. Immunol. 116, 44–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Carr, D.J.J., DeCosta, B.R., Kim, C.-H., Jacobson, A.E., Guarcello, V., Rice, K.C., & Blalock, J.E. (1989). Opioid receptors on cells of the immune system: Evidence for δ- and κ-classes. J. Endocrinol. 122, 161–168.PubMedCrossRefGoogle Scholar
  22. 22.
    Heagy, W., Shipp, M.A., & Finberg, R.W. (1992). Opioid receptor agonists and Ca2+ modulation in human B cell lines. J. Immunol. 149, 4074–4081.PubMedGoogle Scholar
  23. 23.
    Guan, L., Townsend, Eisenstein, T.K., Adler, M.W., & Rogers, T.J. (1994). Both T cells and macrophages are targets of x-opioid-induced immunosuppression. Brain Behay. Immun. 8, 229–240.CrossRefGoogle Scholar
  24. 24.
    Flores, L.R., Hernandez, M.C., & Bayer, B.M. (1994). Acute immunosuppressive effects of morphine: lack of involvement of pituitary and adrenal factors. J. Pharmacol. Exp. Ther. 268, 1129–1134.PubMedGoogle Scholar
  25. 25.
    Fecho, K., Maslonek, K.A., Coussons-Read, M.E., Dykstra, L.A., & Lysle, D.T. (1994). Macrophage-derived nitric oxide is involved in the depressed concanavalin A responsiveness of splenic lymphocytes from rats administered morphine in vivo. J. Immunol. 152, 5845–5852.PubMedGoogle Scholar
  26. 26.
    Bussiere, J.L., Adler, M.W., Rogers, T.J., & Eisenstein, T.K. (1993). Cytokine reversal of morphine-induced suppression of the antibody response. J. Pharmacol. Exp. Ther. 264, 591–597.PubMedGoogle Scholar
  27. 27.
    Bayer, B.M., Gastonguay, M.R., & Hernandez, M.C. (1992). Distinction between the in vitro and in vivo inhibitory effects of morphine on blood lymphocyte proliferation based on agonist sensitivity and naltrexone reversibility. Immunopharmacology 23, 117–124.PubMedCrossRefGoogle Scholar
  28. 28.
    Gwynn, G.J., & Domino, E.F. (1984). Genotype-dependent behavioral sensitivity to mu and kappa opiate agonists. I. acute and chronic effects on mouse locomotor activity. J. Pharmacol. Exp. Ther. 231 306–311.PubMedGoogle Scholar
  29. 29.
    Gwynn, G.J., & Domino, E.F. (1984). Genotype-dependent behavioral sensitivity to mu and kappa opiate agonists. II. antinociceptive tolerance and physical dependence. J. Pharmacol. Exp. Ther. 231 312–316.PubMedGoogle Scholar
  30. 30.
    Belknap, J.K., Noordewier, B., & Lame, M. (1989). Genetic dissociation of multiple morphine effects among C57BL/6, DBA/2J and C3H/HeJ inbred mouse strains. Physiol. Behav. 46, 69–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Toby K. Eisenstein
    • 1
  • Joseph J. MeisslerJr.
    • 1
  • Jeanine L. Bussiere
    • 1
    • 2
  • Thomas J. Rogers
    • 1
  • Ellen B. Geller
    • 2
  • Martin W. Adler
    • 2
  1. 1.Department of Microbiology and ImmunologyUSA
  2. 2.Department of PharmacologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations