Molecular Interaction of HIV-1 in Glioma Cells

  • Volker Erfle
  • Andrea Kleinschmidt
  • Markus Neumann
  • Alexandra Ludvigsen
  • Barbara K. Felber
  • George N. Pavlakis
  • Birgit Kohleisen
  • Ruth Brack-Werner

Abstract

Analysis of brain specimens of HIV-1-infected individuals by immuno-chemistry as well as in situ hybridization indicate that the major cell types expressing HIV-1 antigens and nucleic acids in the central nervous system (CNS) are of macrophage origin and include microglia, macrophages and derivative multinucleated cells.1,2 However, HIV-1 expression has been described in other cell types, including capillary endothelial cells, astrocytes, and oligodendrocytes.3–7 Productive HIV-1 infection in brains of patients with AIDS-encephalitis is in many cases not abundant and often not in keeping with the severity of the disease.8 On the other hand, high levels of HIV-1 DNA have been detected in brain tissue by Southern blot analysis9,10 as well as the polymerase chain reaction (PCR) method.11–13 Quantitative estimates of viral DNA in HIV-encephalitis autopsy samples indicate DNA levels comparable to or exceeding those in lymphoid tissues.10,12 This suggests the presence of a latently infected virus reservoir in the brain. An indication that HIV-1 can directly infect cells of the nervous system came from in vitro infection studies of cultured human astrocytoma and neuroblastoma cells with HIV-1.14–19 In addition, primary human brain cells expressing glial fibrillary acidic protein (GFAP) have also been found to be infected with HIV-1 in vitro. 20–22 In vitro infection of human glioma cells with HIV 1 differs markedly from infection of susceptible T-cell lines or peripheral blood mononuclear cells (PBMCs) by: (a) absence of virusinduced cytopathic effects in target cells; (b) lack of requirement for the presence of the CD4 cell surface receptor; and (c) the prevalence of a nonproductive infection phenotype.

Keywords

Lymphoma Leukemia Dementia Glycine Serine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fauci, S. Koenig, H.E. Gendeiman, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089 (1986),PubMedCrossRefGoogle Scholar
  2. 2.
    R. Vazeux, N. Brousse, A. Jarry, et al. AIDS subacute encephalitis. Am. J.Pathol. 126:403(1987).PubMedGoogle Scholar
  3. 3.
    L.G. Epstein, L.R. Sharer, E.-S. Cho, et al. HTLV-III/LAV-like retrovirus particles in the brains of patients with AIDS encephalopathy. AIDS Res 1: 447(1984–85).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Gyorkey, J.L. Melnick, and P Gyorkey. Human immunodeficiency virus in brain biopsies of patients with AIDS and progressive encephalopathy. J. Infect. Dis. 15:870 (1987).CrossRefGoogle Scholar
  5. 5.
    J.A. Levy, L.A. Evans, C. Cheng Mayer, et al. Biologic and molecular properties of the AIDS-associated retrovirus that affect antiviral therapy. Ann. Inst. Pasteur Virol. 138:101 (1987).CrossRefGoogle Scholar
  6. 6.
    T. Pumarola-Sune, B.A. Navia, C. Cordon-Cardo, et al. HIV antigen in the brains of patients with the AIDS dementia complex. Ann. Neurol. 21:490 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    C.A. Wiley, R.D. Schrier, J.A, Nelson, et al. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc. Natl. Acad. Sci. USA 83:7089 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    R.W. Price, B. Brew, J. Sidtis, et al. The brain in AIDS: central nervous system HIV 1 infection and dementia complex. Science 239:586 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    M.S. Saag, B.H. Hahn, J. Gibbons, et al. Extensive variation of human immunodeficiency virus type-1 in vitro. Nature 334:440 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    G.M. Shaw, B.H. Hahn, S.K. Arya, et al. Molecular characterization of human T-cell leukemia (lymphotropic) virus type IH in the acquired immune deficiency syndrome. Science 226:1165 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Bell, and L. Ratner, Specificity of polymerase chain amplification reactions for the human immunodeficiency virus type IDNA sequences. AIDS Res Hum Retrovirus 5:87 (1989).CrossRefGoogle Scholar
  12. 12.
    S. Pang, Y. Koyanagi, S. Miles, et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343:85 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    V.A. Varma, S. Hunter, R. Tickman, et al. Acute fatal HIV encephalitis with negative serologic assays for antibody and antigen: diagnosis by polymerase chain reaction. N. Engl.J. Med. 320:1494 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Cheng-Mayer, J.T.Rutka, M.L. Rosenblum, et al. Human immunodeficiency virus can productively infect cultured human glial cells. Proc. Natl. Acad. Sci. USA 84:3526 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Chiodi, S. Fuerstenberg, M Gidlund, et al. Infection of brain-derived cells with the immunodeficiency virus. J. Virol. 62:151 (1987).Google Scholar
  16. 16.
    P.R. Clapham, J.N. Weber, D. Whitby, et al. Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature 337:368 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Dewhurst, K. Sakai, J. Bresser, et al. Persistent productive infection of human glial cells by human immunodeficiency virus (HIV) and by infectious molecular clones of HIV. J.Virol. 61:3774 (1987).PubMedGoogle Scholar
  18. 18.
    X.L. Li, T. Moudgil, H.V.Vinters, et al. CD-4 independent, productive infection of a neuronal cell line by human immunodeficiency virus type 1. J. Virol. 64:1383 (1990).PubMedGoogle Scholar
  19. 19.
    P. Shapshak, N.C.J. Sun, L. Resnick, et al. HIV-1 propagates in human neuroblastoma cells. J. AIDS 4:228 (1991).Google Scholar
  20. 20.
    G. Christofinia, L. Papadaki, Q. Sattentau, et al. HIV replicates in cultured human brain cells. AIDS 1:229 (1987).Google Scholar
  21. 21.
    C. Kunsch, and B.Wigdahl. Transient expression of human immunodeficiency virus type 1 genome results in a nonproductive infection in human fetal dorsal root ganglia glial cells. Virology 173:715 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Rytik, V.F. Eremin, Z.B. Kvacheva, et al. Susceptibility of primary human glial fibrillary acidic protein-positive brain cells to human immunodeficiency virus infection in vitro: Anti-HIV activity of memantine. AIDS Res. Hum. Retrovirus 7:89 (1991).Google Scholar
  23. 23.
    D. Stavrou, E. Keiditsch, F. Schmidberger, et al. Monoclonal antibodies against human astrocytomas and their reactivity pattern. J. Neurol Sci. 80:205(1987).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Brack-Werner, A. Kleinschimdt, A. Ludvigsen, et al. Infection of human brain cells by HIV-1: Restricted virus production in chronically infected human glial cell lines. AIDS 6:273–285.Google Scholar
  25. 25.
    S.Z. Salahuddin, P.D. Markham, F. Wong-Staal, et al. Restricted expression of human T-cell leukemia-lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology 129:51 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    V. Erfle, P. Stoeckbauer, A. Kleinschmidt, et al. Target cells for HIV in the central nervous system: macrophages or glial cells? Res. Virol. 142:139 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    G.M. Shaw, B.H. Hahn, S.K. Arya, et al. Molecular characterization of human T-cell leukemia (lymphotropic) virus type HI in the acquired immune deficiency syndrome. Science 226:1165 (1984).PubMedCrossRefGoogle Scholar
  28. 28.
    B. Guy, Riviere, K. Dott, et al. Mutational analysis of the HIV nef protein. Virology 176:413 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    K.P. Samuel, A. Seth, A. Konopka, et al. The 3’-orf protein of human immunodeficiency virus shows structural homology with the phosphorylation domain of human interleukin-2 receptor and the ATP-binding site of the protein kinase family. FEBS Lett. 218:81 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Franza, Jr., F.J. Rauscher, III, S.F. Josephs, et al. The fos complex and fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 239:1150 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    J.-P. Shaw, P.J. Utz, D.B. Durand, et al. Identification of a putative regulator of early T cell activation genes. Science 241:202 (1988).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Orchard, N. Perkins, C. Chapman, et al. A novel T-cell protein which recognizes a palindromic sequence in the negative regulatory element of the human immunodeficiency virus long terminal repeat. J. Virol 64: 3234(1990).PubMedGoogle Scholar
  33. 33.
    M.R. Smith, and W.C. Greene. The same 50 kDa cellular protein binds to the negative regulatory elements of the interleukin 2 receptor alpha-chain gene and the human immunodeficiency virus type 1 long terminal repeat. Proc. Natl. Acad. Sci. USA 86:8526 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    T.M. Folks, J. Justement, A. Kinter, C.A.Dinarello, A. Fauci, and J.H. Kehrl. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238:800 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    G. Poli, A. Kinter, J.S. Justement, et al. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc. Natl. Acad. Sci. USA 87:782 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    D.E. Brenneman, G.L. Westbrook, S.P. Fitsgerald, et al. Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335:639 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    M.R. Lee, D.D. Ho, and M.E. Gurney. Functional interaction and partial homology between human immunodeficiency virus and neuroleukin. Science 237:1047 (1987),PubMedCrossRefGoogle Scholar
  38. 38.
    J.-M. Sabatier, E.Vives, K. Mabrouk, et al. Evidence for neurotoxic activity of Tat human immunodeficiency virus type 1. J. Virol. 65:961 (1991).PubMedGoogle Scholar
  39. 39.
    K. Mabrouk, K. Vanrietschoten, E. Vives, et al. Lethal neurotoxicity in mice of the basic domains of HIV and SIV Rev proteins -study of these regions by circular dichroism. FEBS Lett. 289:13 (1991).PubMedCrossRefGoogle Scholar
  40. 40.
    D. Giulian, K. Vaca, and C.A. Noonan. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593 (1990).PubMedCrossRefGoogle Scholar
  41. 41.
    L.Pulliam, B.C. Herndier, N.M. Tang, et al. Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains. J.Clin. Invest. 87:503(1991). PubMedCrossRefGoogle Scholar
  42. 42.
    M. Maj. Organic mental disorders in HIV-1 infection. AIDS 4:831 (1990).PubMedCrossRefGoogle Scholar
  43. 43.
    L.R. Sharer, J. Michaels, M. Muerphy-Coreb, et al. Serial pathogenesis study of SIV brain infection. J. Med. Primatol. 20:211 (1991).PubMedGoogle Scholar
  44. 44.
    B. Kohleisen, K. Gaedigk Nitschko, T. Werner, et al. Biological properties of Nef and its pathogenic potential in HIV-1-related central nervous system dysfunction. AIFO 5:175 (1993).Google Scholar
  45. 45.
    T. Werner, S. Ferroni, T. Saermark, et al. HIV-1 Nef protein exhibits structural and functional similarity to scorpion peptides interacting with K + channels. AIDS 5:1301 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    R.F. Garry, J.J. Kort, F. Koch Nolte,etal. Similarities of viral proteins to toxins that interact with monovalent cation channels. AIDS 5:1381 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Volker Erfle
    • 1
  • Andrea Kleinschmidt
    • 1
  • Markus Neumann
    • 1
  • Alexandra Ludvigsen
    • 1
  • Barbara K. Felber
    • 2
  • George N. Pavlakis
    • 2
  • Birgit Kohleisen
    • 1
  • Ruth Brack-Werner
    • 1
  1. 1.Institut für Molekulare VirologieGSF-Forschungszentrum für Umwelt und Gesundheit, GmbHNeuherbergGermany
  2. 2.Basic Research ProgramNational Cancer Institute-Frederick Cancer Research and Development CenterFrederickUSA

Personalised recommendations