Correlations and Strong Interactions

  • R. M. Weiner
Part of the NATO ASI Series book series (NSSB, volume 346)

Abstract

Although Quantum Chromodynamics (QCD) is considered at present to be the best candidate for a theory of strong interactions, it is not directly applicable to the most interesting and important aspects of strong interactions, i.e. to multiparticle production, which is a “soft” process. Instead one uses lattice QCD which predicts in principle the hadronic mass spectrum. The fact that the main content of Hagedorn’s statistical bootstrap is also the mass spectrum proves the intuitive power of this approach, developed many years before the advent of QCD.

Keywords

Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Correlations and Multiparticle Production, M. Plümer, S. Raha and R.M. Weiner, editors, (CAMP-LESIP IV) World Scientific 1991.Google Scholar
  2. 2.
    G.N. Fowler et al., J.Phys. G16, (1990) 1439.MathSciNetADSGoogle Scholar
  3. 3.
    G.J. Alner et al., Phys.Rep. 154, (1987) 247.ADSCrossRefGoogle Scholar
  4. 4.
    N. Neumeister et al., Phvs.Lett. B275. (1992) 186.ADSGoogle Scholar
  5. 5.
    N. Agagbabyan et al., Z.Phys. C59, (1993) 405.ADSGoogle Scholar
  6. 6.
    I.V. Andreev et al., Phvs.Lett. B321. 1994 277.ADSGoogle Scholar
  7. 7.
    I.V. Andreev, M. Plümer and R.M. Weiner, Int.J.Mod.Phys. A8, (1993) 4577.ADSGoogle Scholar
  8. 8.
    I.V. Andreev, M. Plümer, B.R. Schlei and R.M. Weiner, to be published.Google Scholar
  9. 9.
    Yu.M. Sinyukov, Preprint ITP-93-8E, Kiev 1993, to be published in Nucl.Phys.A.Google Scholar
  10. 10.
    A. Bialas and R. Peschanski, Nucl.Phvs. B273. (1986) 703.ADSCrossRefGoogle Scholar
  11. 11.
    P. Carruthers et al., Phvs.Lett. B222. (1989) 487ADSGoogle Scholar
  12. M. Gyulassy, Multiparticle Dynamics (Festschrift for Leon Van Hove) eds. A. Giovannini and W Kittel (World Scientific, Singapore, 1990) p.479.Google Scholar
  13. 12.
    I. Derado et al., Z.Phys. C47, (1990) 23.Google Scholar
  14. 13.
    A. Bialas., Acta Phys. Pol. B23, (1992) 561.MathSciNetGoogle Scholar
  15. 14.
    I.V. Andreev et al., Phvs.Lett. B316, (1993) 583.ADSGoogle Scholar
  16. I.V. Andreev Phys.Rev. D49, (1994) 1217.ADSGoogle Scholar
  17. 15.
    M. Gyulassy and S.S. Padula, Phys.Rev. C41 (1989) R21.ADSGoogle Scholar
  18. 16.
    J. Bolz et al., Phys.Rev. D47 (1993) 3860.ADSGoogle Scholar
  19. 17.
    B. Schlei et al., Phys.Lett. B293 (1992) 275.ADSGoogle Scholar
  20. 18.
    I.V. Andreev, M. Plümer and R.M. Weiner, Phys.Rev.Lett. 67, (1991) 3475.ADSCrossRefGoogle Scholar
  21. 19.
    M. Bowler, Phys. Lett. B276 (1992) 237.MathSciNetADSGoogle Scholar
  22. 20.
    Yu.M. Sinyukov and A.Yu. Tolstykh, Z.Phys. C61, (1994) 593.ADSGoogle Scholar
  23. 21.
    Yu.M. Sinyukov and B. Lörstad, Z.Phys. C61, (1994) 587.ADSGoogle Scholar
  24. 22.
    L. Razumov and R.M. Weiner, to be submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. M. Weiner
    • 1
  1. 1.Physics DepartmentUniversity of MarburgMarburgGermany

Personalised recommendations