Hadronic Matter Equation of State and the Hadron Mass Spectrum

  • Ahmed Tounsi
  • Jean Letessier
  • Johann Rafelski
Part of the NATO ASI Series book series (NSSB, volume 346)


The Statistical Bootstrap Model1–3 (SBM) based on the hypothesis that hadrons are made of hadrons, with constituent and compound hadrons being treated on the same footing, implies a hadronic mass spectrum of the asymptotic form
$$\rho (m) \approx cm^{ - 2} \exp (m/T_H ).$$


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hagedorn, Suppl. Nuovo Cimento 3 (1965) 147.Google Scholar
  2. R. Hagedorn and J. Ranft, Suppl. Nuovo Cimento 6 (1968) 169.Google Scholar
  3. R. Hagedorn, The Long Way to the Statistical Model, in this volume.Google Scholar
  4. 2.
    S. Frautschi, Phys. Rev. D3 (1971) 2821.ADSGoogle Scholar
  5. 3.
    A. Tounsi, Statistical Bootstrap and Thermodynamical Model of High Energy Strong Interactions, in: Phenomenology of Particles at High Energy, Academic Press, London, 1974. 14th Scottish Universities Summer School in Physics, Middleton Hall, 1973.Google Scholar
  6. 4.
    N. Cabibbo and G. Parisi, Phys. Lett. B59 (1975) 67.ADSGoogle Scholar
  7. 5.
    J. Letessier and A. Tounsi, Bootstrap statistique et transition de phase dans la matière hadronique, Orsay preprint, IPNO/TH 76-14.Google Scholar
  8. 6.
    H. Satz, Ann. Rev. Nucl. Part. Sci. 35 (1985) 245 and references therein.ADSCrossRefGoogle Scholar
  9. J. Cleymans, R. Gavai and E. Suhonen, Phys. Rep. C130 (1986) 218.Google Scholar
  10. 7.
    J. Baacke, Acta Phys. Pol. B8 (1977) 625.Google Scholar
  11. 8.
    R. Hagedorn, I. Montvay and J. Rafelski, Thermodynamics of Nuclear Matter from the Statistical Bootstrap Model in: Hadronic Matter at Extreme Energy Density, N. Cabibbo and L. Sertorio, eds., Springer Science+Business Media New York (1980).Google Scholar
  12. R. Hagedorn and J. Rafelski, Phys. Lett. B97 (1980) 136.ADSGoogle Scholar
  13. 9.
    M. I. Gorenstein, G. M. Zinovjev, V. K. Petrov and V. P. Shelest, translated from Teor. Mat. Fiz 52 (1982) 346.Google Scholar
  14. 10.
    M. I. Gorenstein, S. I. Lipskikh and G. M. Zinovjev, Z Phys. C22 (1984) 189.ADSGoogle Scholar
  15. 11.
    J. Letessier and A. Tounsi, Phys. Rev. D40 (1989) 2914.ADSGoogle Scholar
  16. 12.
    M. Kataja, J. Letessier, P.V. Ruuskanen and A. Tounsi, Z. Phys. C55 (1992) 153.ADSGoogle Scholar
  17. 13.
    K. Redlich and L. Turko, Z. Phys. C5 (1980) 201.MathSciNetADSGoogle Scholar
  18. 14.
    M. I. Gorenstein, S. I. Lipskikh, V. K. Petrov and G. M. Zinovjev, Phys. Lett. B123 (1982) 437.ADSGoogle Scholar
  19. 15.
    G. Auberson, L. Epele, G. Mahoux and F. R. A. Simao, J. Math. Phys. 27 (1986) 1688.ADSCrossRefGoogle Scholar
  20. 16.
    H. T. Elze, W. Greiner, J. Rafelski, Z. Phys. C24 (1984) 361.ADSGoogle Scholar
  21. 17.
    A. Aerts and J. Rafelski, Phys. Lett B148 (1984) 337.ADSGoogle Scholar
  22. 18.
    L. S. Gradshtein, and S. I. Ryzhic, Table of Inte gals, Series and Products, Academic Press (1965).Google Scholar
  23. 19.
    J. I. Kapusta, Phys. Rev. D23 (1981) 2444.ADSGoogle Scholar
  24. 20.
    See, e.g., K. Huang, Statistical Mechanics, J. Wiley Inc., New-York (1963).Google Scholar
  25. 21.
    R. Hagedorn, Z. Phys. C17 (1983) 265.ADSGoogle Scholar
  26. 22.
    J. Letessier, J. Rafelski, A. Tounsi, Phys. Lett. B292 (1992) 417.ADSGoogle Scholar
  27. Strangeness Conservation in Hot Fireballs J. Letessier, A. Tounsi, U. Heinz, J. Sollfrank, J. Rafelski. Paris LPTHE/93-27. Submitted to Phys. Rev. D..Google Scholar
  28. 23.
    M. Danos and J. Rafelski, Phys. Rev. C50 (1994) 1686.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ahmed Tounsi
    • 1
  • Jean Letessier
    • 1
  • Johann Rafelski
    • 1
    • 2
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Paris 7Paris Cedex 05France
  2. 2.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations