The Spleen and its Coelomic and Enteric History

  • P. Sima
  • J. Slipka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 371)


The spleen is a typical vertebrate organ whose homolog is said to be found in cyclostomes and chondrichthian in the form of a spiral fold. The typhlosole of some invertebrates is considered to be its analog. Here, the authors describe a typhlosole-like structure also in the cephalochordates. Both the spiral fold and typhlosole are derived from the lining of the coelomic cavity and appear as a fold of the intestinal wall with invaded perienteric coelomic tissue of splanchnopleuric origin. Similarly the spleen develops in the close vicinity of the digestive tube in the dorsal mesentery. Its ability to phagocytose resembles the function of the typhlosole of annelids. The hemopoietic function is secondary, and it evolved gradually in close association with other important immune organs, especially the thymus.


Digestive Tube Coelomic Cavity Coelomic Epithelium Dorsal Vessel Spiral Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. W. Gray and J. E. Skandalis, in:“Embryology for Surgeons” Saunders Co., Philadelphia (1972).Google Scholar
  2. 2.
    R. Fange and M. L. Johansson-Sjobeck, Comp. Biochem. Physiol. 52A: 577 (1975).CrossRefGoogle Scholar
  3. 3.
    F. Tischenforf, in:“Handbuch der mikroskopischen Anatomie des Menschen”, W. Mollendorf and W. V. Bargmann, eds., Springer Verlag, Berlin (1969).Google Scholar
  4. 4.
    O. F. Kampmeier, in:“Evolution and Comparative Morphology of the Lymphatic System”, Charles C. Thomas, ed, Springfield (1969).Google Scholar
  5. 5.
    M. Caar, D. Stites, and H. Fudenberg, Transplantation 20: 410 (1975).CrossRefGoogle Scholar
  6. 6.
    J. Sterzl, in:“Vyvoj a indukce imunitni odpovedi” (in Czech), Academia, Praha (1989).Google Scholar
  7. 7.
    H. Z. Movat, G. A. van Erkel, and N. V. P. Fernando, Fed. Proc. 22: 600 (1963).Google Scholar
  8. 8.
    F. Kovaru, R. Stepankova, L. Mandel, J. Kruml, and E. Kenig, Folia Microbiol. 24: 32 (1979).CrossRefGoogle Scholar
  9. 9.
    W. Marinelli and A. Strenger, in:“Vergleichene Anatomie und Morphologie der Wirbeltiere”, Deuticke, Wien (1959).Google Scholar
  10. 10.
    A. G. Zapata and E. L. Cooper, in:“The Immune System: Comparative Histophysiology”, Wiley, New York (1990).Google Scholar
  11. 11.
    E. Conklin, J. Morphol. 54: 69 (1932).CrossRefGoogle Scholar
  12. 12.
    P. Sima and V. Vetvicka, in:“Evolution of Immune Reactions”, CRC Press, Boca Raton (1990).Google Scholar
  13. 13.
    R. Fange, Vet. Immunol. Imunopathol. 12: 153 (1986).CrossRefGoogle Scholar
  14. 14.
    R. A. Good, J. Finstad, B. Pollara, and A. E. Gabrielsen, in:“Phylogeny of Immunity”, R.T. Smith, P. A. Miescher, and R. A. Good, eds., p. 149, University of Florida Press, Gainesville (1966).Google Scholar
  15. 15.
    J. Rejnek, L. Tuckova, P. Sima, and M. Bilej, Immunol. Lett. 36: 131 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. Sima
    • 1
  • J. Slipka
    • 2
  1. 1.Department of Immunology, Institute of MicrobiologyCzech Academy of SciencesPragueCzech Republic
  2. 2.Institute of Histology and Embryology, Faculty of MedicineCharles UniversityPilsenCzech Republic

Personalised recommendations