Improved Treatment of Frequency Sums in Propagator-Renormalized Perturbation Theories

  • J. J. Deisz
  • D. W. Hess
  • J. W. Serene

Abstract

This work stems from calculations for Hubbard1,2,3 and Anderson lattice4,5 models in a self-consistent conserving Green’s function scheme6,7 known as the fluctuation exchange approximation (FEA).8 For the 2D Hubbard model, special features of band structure, such as Fermi surface nesting9 and van Hove singularities near the Fermi surface10,11 lead to anomalous frequency and momentum dependences of the self-consistent self-energy.3,12 At half filling the FEA self-energy develops a frequency dependence similar to that proposed for a marginal Fermi liquid,13 and the spin-fluctuation propagator appears to move exponentially close to an instability with decreasing temperature. When the spin-fluctuation propagator is sufficiently close to this instability, we have been unable to obtain stable converged solutions. For the half-filled 3D Hubbard model, where an antiferromagnetic phase transition is expected at finite temperature, we have studied the fully self-consistent spin response to a staggered magnetic field.14,* The results are qualitatively similar to those in 2D,15 and show no magnetic order for a range of U and T well within the antiferromagnetic phase expected from Quantum Monte Carlo simulations.16

Keywords

Sugar Entropy Convolution Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    J.W. Serene and D.W. Hess, in: “Electronic Structure and Mechanisms for High Temperature Superconductivity”, J. Ashkenazi, S.E. Barnes, F. Zuo, G. Vezzoli, and B.M. Klein, ed., Plenum, New York (1991).Google Scholar
  2. 2.
    J.W. Serene and D.W. Hess, Phys. Rev. B44:3391(1991).ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Serene and D.W. Hess, in: “Recent Progress in Many—Body Theories”, Vol. 3, T.L. Ainsworth et al., ed., Plenum, New York (1992).Google Scholar
  4. 4.
    P.G. McQueen, D.W. Hess, and J.W. Serene, Phys. Rev. Lett. 70:129(1993).ADSCrossRefGoogle Scholar
  5. 5.
    P.G. McQueen, D.W. Hess, and J.W. Serene, Phys. Rev. B50, in press.Google Scholar
  6. 6.
    J.M. Luttinger and J.C. Ward, Phys. Rev. 118:1417(1960).MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    G. Baym, Phys. Rev. 127:1391(1962).MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    N.E. Bickers, D.J. Scalapino, and S.R. White, Phys. Rev. Lett. 62:961(1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. Virosztek and J. Ruvalds, Phys. Rev. B42:4064(1990).ADSCrossRefGoogle Scholar
  10. 10.
    P.A. Lee and N. Read, Phys. Rev. Lett. 58:2691(1987).ADSCrossRefGoogle Scholar
  11. 11.
    C.L. Kane, D.M. Newns, P.C. Pattnaik, C.C. Tsuei, and C.C. Chi, in: “Electronic Structure and Mechanisms for High Temperature Superconductivity”, J. Ashkenazi, S.E. Barnes, F. Zuo, G. Vezzoli, and B.M. Klein, ed., Plenum, New York (1991).Google Scholar
  12. 12.
    D.W. Hess and J.W. Serene, J. Phys. Chem. Solids 52:1385(1991); and unpublished.ADSCrossRefGoogle Scholar
  13. 13.
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.E. Rucken-stein, Phys. Rev. Lett. 63:1996(1989).ADSCrossRefGoogle Scholar
  14. 14.
    J.J. Deisz, J.W. Serene, and D.W. Hess, unpublished.Google Scholar
  15. 15.
    N.E. Bickers and S.R. White, Phys. Rev. B43:8044 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    R.T. Scalettar, D.J. Scalapino, R.L. Sugar, and D. Toussaint, Phys. Rev. B39:4711 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. J. Deisz
    • 1
  • D. W. Hess
    • 2
  • J. W. Serene
    • 1
  1. 1.Department of PhysicsGeorgetown UniversityUSA
  2. 2.Complex Systems Theory BranchNaval Research LaboratoryUSA

Personalised recommendations