Quantum Chaos and Fundamental Symmetry Violations in Nuclei and Other Complex Systems

  • O. K. Vorov


In numerous physical applications (atoms, nuclei, mesoscopic objects, metallic dusters), one faces the problem of considering a highly excited interacting many-body system.1-28 As the level density grows with excitation energy, the average energy spacing between levels with the same exact quantum numbers, d, becomes comparable to (or even smaller than) a typical off-diagonal Hamiltonian matrix element, y; this complicates the dynamics. Such systems are conventionally referred to, in this limit, as “quantum chaotic systems” (QCS).2-8


Compound Nucleus Random Matrix Theory Compound State Gaussian Ensemble Spatial Parity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Statistical Theories of Spectra: Fluctuations,” C.E. Porter, ed., Academic press, N.Y. and London (1965) and ibid. Google Scholar
  2. 2.
    T.A. Brody, et al., Rev. Mod. Phys. 53:385(1981); M.L. Mehta, “Random Matrices,” 2nd ed., Boston, Acad. Press, (1991).Google Scholar
  3. 3.
    D. Agassi and H.A. Weidenmüller, Phys. Lett. 56B:305(1975); D. Agassi, H.A. Weidenmüller and G. Mantzouranis, Phys. Rep. C22:147(1975); J. Verbaarschot, H.A. Weidenmüller and M. Zirnbauer, Phys. Rep. 129:367(1985).Google Scholar
  4. 4.
    L.A. Pastur, Teor. Mat. Fyz. 10:102(1972) [Th. Math. Phys. 10:67(1972)].MathSciNetGoogle Scholar
  5. 5.
    A. Bohr and B. Mottelson, “Nuclear Structure,” Vol. 1, Benjamin, New York (1969).Google Scholar
  6. 6.
    B.V. Chirikov, Phys. Lett. 108A:68(1985).ADSCrossRefGoogle Scholar
  7. 7.
    G. Casati, L. Molinari and F. Izrailev, Phys. Rev. Lett. 64:1851(1990); Y.V. Fyodorov and A.D. Mirlin, Phys. Rev. Lett. 67:2405(1991).Google Scholar
  8. 8.
    O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223:43(1993).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. Rekstad, T.S. Tveter, and M. Guttormsen, Phys. Rev. Lett. 65:2122(1990).ADSCrossRefGoogle Scholar
  10. 10.
    R. Holzmann et al., Phys.Rev.Lett. 62, 520 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    O.P. Sushkov and V.V. Flambaum, Pis’ma Zh. Eksp. Theor. fiz. 32:377(1980), [JETP Lett. 32:353(1980)]; INP Reports Nos. 80–148(1980) and 81–37(1981); Usp. Fiz. Nauk 136:3(1982) [Soy. Phys. Usp. 25:1(1982)]; “16th LINP Winter School Proceedings,” Leningrad (1981), p. 200; Nucl. Phys. A412:13(1984).Google Scholar
  12. 12.
    V.P. Alfimenkov, et al., Pis’ma Zh. Eksp. Theor. fiz. 34:308(1981) [JETP Lett. 34:295(1981)]; Nucl. Phys. A398:93(1983); Usp. Fiz. Nauk 144:361(1984) [Soy. Phys. Usp. 27:797(1984)].Google Scholar
  13. 13.
    C.M. Frankle, et al., Phys. Rev. Lett. 67:564(1991); M.B. Johnson, J.D. Bowman and S.H. Yoo, Phys. Rev. Lett. 67:310(1991).Google Scholar
  14. 14.
    V.V. Flambaum, Phys. Rev. C45:437(1992).Google Scholar
  15. 15.
    M.B. Johnson, J.D. Bowman, and S.H. Yoo, Phys. Rev. Lett. 67:310(1991).Google Scholar
  16. 16.
    S.E. Koonin, C.W. Johnson, and P. Vogel, Phys. Rev. Lett. 69:1163(1992).Google Scholar
  17. 17.
    V.V. Flambaum and O.K. Vorov, Phys. Rev. C50, in press.Google Scholar
  18. 18.
    N. Auerbach and J.D. Bowman, Phys. Rev. C46:2582(1992).ADSGoogle Scholar
  19. 19.
    V.V. Flambaum, in: “Proceedings of the International Conference on Time Reversal Invariance and Parity Violation in Neutron Reactions,” C.R. Gould, J.D. Bowman, and Yu.P. Popov, ed., World Scientific, Singapore (1994), p. 39.Google Scholar
  20. 20.
    N. Bohr, Nature 137:344(1936).ADSCrossRefMATHGoogle Scholar
  21. 21.
    V.V. Flambaum and O.K. Vorov, Phys. Rev. Lett. 70:4051(1993).ADSCrossRefGoogle Scholar
  22. 22.
    O.K. Vorov, submitted to Phys. Rev. Lett.Google Scholar
  23. 23.
    F.S. Chang, J.B. French and T.H. Thio, Ann. Phys. (N. Y.) 66:137(1971); S.S.M. Wong and J.B. French, Nucl. Phys. A198:188(1972); J.B. French and S.S.M. Wong, Phys. Lett. 35B:5(1972); J.B. French and J.C. Parikh, Phys. Lett. 35B:1(1971); J.B. French, V.K.B. Kot, A. Pandy, and S. Tomsovich, Ann. Phys. (N.Y.) 181:260(1988).Google Scholar
  24. 24.
    S.W. Lovesey, “Condensed Matter Physics. Dynamic correlations,” Benjamin, London (1980).Google Scholar
  25. 25.
    M. Stone, H.W. Wyld, and R.L. Schult, Phys. Rev. B45:14156(1992)ADSCrossRefGoogle Scholar
  26. 26.
    W.P. Halperin, Rev. Mod. Phys. 58:533(1986).ADSCrossRefGoogle Scholar
  27. 27.
    V.G. Zelevinsky, Nucl. Phys. A555:109(1993).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    C.H. Lewenkopf and V.G. Zelevinsky, Nucl. Phys. A596:183c(1994).ADSCrossRefGoogle Scholar
  29. 29.
    V.V. Flambaum and O.K. Vorov, Phys. Rev. C49:1827(1994).ADSGoogle Scholar
  30. 30.
    V.V. Flambaum and O.K. Vorov, submitted to Phys. Rev. C; preprint SPNSW_18.11.94.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • O. K. Vorov
    • 1
  1. 1.School of PhysicsUniversity of New South WalesSydneyAustralia

Personalised recommendations