Advertisement

Relativistic Coupled Cluster Calculations

  • Uzi Kaldor

Abstract

The majority of contemporary ab initio calculations have been performed on light atoms and molecules containing them, with which a large part of chemical research is concerned. However, important physical and chemical processes involve heavy atoms, where relativistic effects cannot be ignored. Because relativistic and correlation effects play an essential role in the electronic structure of heavy-atom systems, relativistic many-body theories have become the subject of active research interest in recent years.1 Since relativistic effects can be large and may not always be treated as a small perturbation, it is often necessary to forfeit the Schrödinger equation in favor of the Dirac equation in order to describe the electronic structure of heavy-atom systems.

Keywords

Couple Cluster Alkali Metal Atom Couple Cluster Method Nonrelativistic Result Instantaneous Coulomb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e.g. “The effects of relativity in atoms, molecules, and the solid state,” S. Wilson, I.P. Grant and B.L. Gyorffy, ed., Plenum, New York (1991).Google Scholar
  2. 2.
    W.R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57:1126(1986); W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A37:307(1988); ibid. A41:1689(1990).Google Scholar
  3. 3.
    H.M. Quiney, I.P. Grant and S. Wilson, Phys. Scripta 36:460(1987); in: “Many-Body Methods in Quantum Chemistry,” U. Kaldor, ed., Lecture Notes in Chemistry 52, Springer, Heidelberg (1989) p. 307; J. Phys. B23:L271(1990).Google Scholar
  4. 4.
    Y. Ishikawa, Phys. Rev. A42:1142(1990); Y. Ishikawa and H.M. Quiney, Phys. Rev. A47:1732(1993).Google Scholar
  5. 5.
    A. Rutkowski, J. Phys. B19:3443(1986); A. Rutkowski and W.H.E. Schwarz, Theoret. Chim. Acta 76:391(1990).Google Scholar
  6. 6.
    I. Lindgren, in: “Many-Body Methods in Quantum Chemistry,” U. Kaldor, ed., Lecture Notes in Chemistry 52, Springer, Heidelberg (1989) p. 293; Nucl. Instr. Meth. Phys. Res. B31:102(1988).Google Scholar
  7. 7.
    S.A. Blundell, W.R. Johnson, Z.W. Liu and J. Sapirstein, Phys. Rev. A39:3768(1989); S.A. Blundell, W.R. Johnson, and J. Sapirstein, Phys. Rev. A43:3407(1991).Google Scholar
  8. 8.
    E. Ilyabaev and U. Kaldor, Chem. Phys. Lett. 194:95(1992); J. Chem. Phys. 97:8455(1992); Phys. Rev. A47:137(1993).Google Scholar
  9. 9.
    H. Sekino and R.J. Bartlett, Intern. J. Quantum Chem. Symp. 24:241(1990).Google Scholar
  10. 10.
    E. Lindroth and S. Salomonson, Phys. Rev. A41:4659(1990); E. Lindroth and J. Hvarfner, ibid. A45:2771(1992); E. Lindroth and A. Ynnerman, ibid. A47:961(1993).Google Scholar
  11. 11.
    E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A49:1724(1994).Google Scholar
  12. 12.
    E. Eliav, U. Kaldor, and Y. Ishikawa, Chem. Phys. Lett. 222:82(1994).Google Scholar
  13. 13.
    E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A50:1121(1994).Google Scholar
  14. 14.
    E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A, in press.Google Scholar
  15. 15.
    G.E. Brown and D.G. Ravenhall, Proc. Roy. Soc. (London) A208:552(1951); W. Buchmiiller and K. Dietz, Z. Phys. C5:45(1980); J. Sucher, Phys. Rev. A30:703(1984).Google Scholar
  16. 16.
    M. Douglas and N.M. KrollAnn. Phys. (NY) 82:89(1974).Google Scholar
  17. 17.
    G. Jansen and B.A. Heß, Phys. Rev. A39:6016(1989).Google Scholar
  18. 18.
    B.A. Heß, R.J. Buenker, and P. Chandra, Int. J. Quantum Chem. 29:737(1986); G.J. Jansen and B.A. Heß, Chem. Phys. Lett. 160:507(1989); A. Pizco, G. Jansen, and B.A. Heß, J. Chem. Phys. 98:3945(1993); B.A. Heß, Phys. Rev. A32:756(1985); ibid. A33:3742(1986); R. Samzow and B.A. Heß, Chem. Phys. Lett. 184:491(1991); R. Samzow, B.A. Heß, and G. Jansen, J. Chem. Phys. 96:1227(1992).Google Scholar
  19. 19.
    M. Mittleman, Phys. Rev. A4:893(1971); ibid. A5:2395(1972); J. Sucher, ibid. A22:348(1980); Phys. Scripta 36:271(1987); J. Phys. B21:L585(1988).Google Scholar
  20. 20.
    I. Lindgren, Intern. J. Quantum Chem. Symp. 12:33(1978); S. Salomonson, I. Lindgren, and A.-M. Mártensson, Phys. Scripta 21:351(1980); I. Lindgren and J. Morrison, “Atomic Many-Body Theory,” 2nd ed., Springer, Berlin (1986).Google Scholar
  21. 21.
    D. Mukherjee, Chem. Phys. Lett. 125:207(1986); Int. J. Quantum Chem. Symp. 20:409(1986).Google Scholar
  22. 22.
    W.C. Martin, R. Zalubas, and L. Hagan, “Atomic energy levels - The Rare-Earth Elements,” U.S. National Bureau of Standards, National Standards Reference Data Series, NBS 60, U.S. GPO, Washington, DC (1978).Google Scholar
  23. 23.
    J.F. Wyart, V. Kaufman, and J. Sugar, Phys. Scr. 22:389(1980).Google Scholar
  24. 24.
    Z. Cai, V. Meiser Umar, and C. Froese Fischer, Phys. Rev. Lett. 68:297(1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Uzi Kaldor
    • 1
  1. 1.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations