Dynamic Structure Function of 3He-4He Mixtures in the Deep Inelastic Regime

  • A. Polls
  • F. Mazzanti
  • J. Boronat
  • F. Dalfovo
  • A. Fabrocini


First results of deep inelastic neutron scattering on 3He-4He mixtures have been recently reported.1 The measured dynamic structure function, S (q, w), seems to reveal a strong enhancement of the condensate fraction, no, of the 4He component with respect to the pure phase, while the 3He and 4He kinetic energies appear to be of the same order of the ones in the pure phases.1 Both facts are in contrast with recent microscopic calculations of the momentum distributions for the mixtures.2 Therefore, theoretical investigations of the dynamic structure function and further analysis of the measured S (q, w) are well justified.


Momentum Distribution Saturation Density Impulse Approximation Condensate Fraction Compton Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Wang and P.E. Sokol, Phys. Rev. Lett. 72:1040(1994).ADSCrossRefGoogle Scholar
  2. 2.
    J. Boronat, A. Polls, and A. Fabrocini, in: “Condensed Matter Theories,” Vol. 5, V.V. Aguilera-Navarro, ed., Plenum, New York (1990), p. 27.CrossRefGoogle Scholar
  3. 3.
    H.A. Gersch, L.J. Rodriguez, and P.N. Smith, Phys. Rev. A5:1547(1972).ADSCrossRefGoogle Scholar
  4. 4.
    V.F. Sears, in: “Neutron Scattering,” Vol. 23A of “Methods of Experimental Physics,” K. Sköld and D.L. Price, ed., Academic Press, New York (1986), p. 521.Google Scholar
  5. 5.
    J. Boronat, F. Dalfovo, F. Mazzanti, and A. Polls, Phys. Rev. B48:7409(1993).ADSCrossRefGoogle Scholar
  6. 6.
    R.N. Silver, Phys. Rev. B38:2283(1988).ADSCrossRefGoogle Scholar
  7. 7.
    C. Carraro and S.E. Koonin, Phys. Rev. Lett. 65:2792(1990).ADSCrossRefGoogle Scholar
  8. 8.
    M.L. Ristig and J.W. Clark, Phys. Rev. B40:4355(1989); Phys. Rev. B41:8811(1990).ADSCrossRefGoogle Scholar
  9. 9.
    R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, and G.T. McConville, J. Chem. Phys. 70:4330(1979).ADSCrossRefGoogle Scholar
  10. 10.
    J. Boronat, A. Polls, and A. Fabrocini, J. Low Temp. Phys. 91:275(1993).ADSCrossRefGoogle Scholar
  11. 11.
    C. Ebner and D.O. Edwards, Phys. Rep. C2:77(1970).ADSGoogle Scholar
  12. 12.
    A. Fabrocini, V.R. Pandharipande, and Q.N. Usmani, Nuovo Cimento D14:469(1992).ADSCrossRefGoogle Scholar
  13. 13.
    J. Boronat, A. Polls, and A. Fabrocini, to be published.Google Scholar
  14. 14.
    R.M. Panoff and J. Carlson, Phys. Rev. Lett. 62:1130(1989).ADSCrossRefGoogle Scholar
  15. 15.
    B. Fák, K. Guckelsberger, M. Körfer, R. Scherm, and A.J. Dianoux, Phys. Rev. B41:8732(1990).ADSCrossRefGoogle Scholar
  16. 16.
    G.L. Squires, “Introduction to the Theory of Thermal Neutron Scattering,” Cambridge Univ. Press, Cambridge (1978).Google Scholar
  17. 17.
    P.E. Sokol, Can. J. Phys. 65:1393(1987).ADSCrossRefGoogle Scholar
  18. 18.
    J. Boronat and J. Casulleras, Phys. Rev. B49:8920(1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Polls
    • 1
  • F. Mazzanti
    • 1
  • J. Boronat
    • 2
  • F. Dalfovo
    • 3
  • A. Fabrocini
    • 4
  1. 1.Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Dipartimento di FisicaUniversità di PisaPisaItaly
  4. 4.Dipartimento di FisicaUniversità di TrentoPovoItaly

Personalised recommendations