Analysis of Encoding of Stimulus Separation in Ensembles of Muscle Afferents

  • Håkan Johansson
  • Mikael Bergenheim
  • Mats Djupsjöbacka
  • Per Sjölander

Abstract

In sensory physiology there have been two main theories relating to the processing of afferent information. These are the “labelled line” theory and the “ensemble coding” theory (cf. Ray & Doetsch, 1990a). The labelled line theory concentrates on the response properties of single receptors, while the ensemble coding theory places the emphasis on encoding in a neuronal population rather than by individual receptors or afferents (Erickson, 1968; Ray & Doetsch, 1990b).

Keywords

Sine Hunt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, I. A. & Davey, M. R. (1968) Composition of Peripheral Nerve, E & S Livingstone Ltd., Edinburgh and LondonGoogle Scholar
  2. Djupsjöbacka, M., Johansson, H., Bergenheim, M. & Sandström, U. (1994) A multichannel hook electrode for simultaneous recording of up to 12 nerve filaments. J. Neurosci. Meths. 52, 69–72.CrossRefGoogle Scholar
  3. Erickson, R. P. (1968) Stimulus coding in topographic and nontopographic afferent modalities: on the significance of the activity of individual sensory neurons. Psychol. Rev. 75, 447–465.PubMedCrossRefGoogle Scholar
  4. Hunt, C. C. & Kuffler, S. W. (1951) Stretch receptor discharges during muscle contraction. J. Physiol. 113, 298–315.PubMedGoogle Scholar
  5. Inbar, G., Madrid, J. & Rudomin, P. (1979) The influence of the gamma system on cross-correlated activity of la muscle spindles and its relation to information transmission. Neurosci. Letts. 13, 73–78.CrossRefGoogle Scholar
  6. Johansson, H. (1988) Rubrospinal and rubrobulbospinal influences on dynamic and static γ-motoneurones. Behav. Brain Res. 28, 97–107.PubMedCrossRefGoogle Scholar
  7. Johansson, H., Sjölander, P. & Sojka, P. (1991) Fusimotor reflex profiles of individual triceps surae primary muscle spindle afferents assessed with multi-afferent recording technique. J. Physiol. (Paris) 85, 6–19.Google Scholar
  8. Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979) Multivariate Analysis, Academic, New York.Google Scholar
  9. Matthews, B. H. C. (1933) Nerve endings in mammalian muscle. J. Physiol. 78, 1–53.PubMedGoogle Scholar
  10. Ray, R. H. & Doetsch, G. S. (1990a) Coding of stimulus location and intensity in populations of mechanosensitive nerve fibers of the raccoon. I. single fiber response properties. Brain Res. Bull. 25, 517–532.PubMedCrossRefGoogle Scholar
  11. Ray, R. H. & Doetsch, G. S. (1990b) Coding of stimulus location and intensity in populations of mechanosensitive nerve fibers of the raccoon. II. Across-fiber response patterns. Brain Res. Bull. 25, 533–550.PubMedCrossRefGoogle Scholar
  12. Wold, H. (1982) Systems under indirect observation. In Systems under Indirect Observation. eds. Joreskog, K. G. & Wold, H., pp. 1–54. North-Holland, Amsterdam.Google Scholar
  13. Wold, S. (1978) Cross validatory estimation of the number of components in factor and principal components analysis. Technometrics 20, 397–406.CrossRefGoogle Scholar
  14. Wold, S. & Sjöström. M. (1977) Simca, a method for analyzing chemical data in terms of similarity and analogy. In Chemometrics, Theory and Application. ed. Kowalski, B., pp. 243-282. ACS Symposium Series, No. 52.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Håkan Johansson
    • 1
  • Mikael Bergenheim
    • 1
    • 2
  • Mats Djupsjöbacka
    • 1
  • Per Sjölander
    • 1
  1. 1.Division of Work PhysiologyNational Institute of Occupational HealthUmeåSweden
  2. 2.Department of PhysiologyUniversity of UmeåUmeåSweden

Personalised recommendations