Respiratory Responses to Hypoxia Peripheral and Central Effects

Chairman’s Introductory Communication
  • A. Berkenbosch
  • C. N. Olievier
  • J. DeGoede
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 393)


The ventilatory response following a stepwise change into hypoxia shows an overshoot i.e. a fast increase in ventilation followed by a slow decline. This overshoot in the ventilatory response is observed in newborns and adults, humans as well as animals, awake as well as anaesthetized (see Berkenbosch et al.(4)) although it is not a universal finding (1,16).



Brain Stem Ventilatory Response Brain Blood Flow Peripheral Chemoreceptor Central Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andronikou, S., M. Shirahata, A. Mokashi and S. Lahiri. Carotid body chemoreceptor and ventilatory responses to sustained hypoxia and hypercapnia in the cat. Respir. Physiol.,72: 361–374, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Bascom, D.A., I.D. Clement, D.A. Cunningham, R. Painter and P.A. Robbins. Changes in peripheral chemoreflex sensitivity during sustained, isocapnic hypoxia. Respir. Physiol., 82: 161–176, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Berkenbosch, A., A. Dahan, J. DeGoede and I.C.W. Olievier. The ventilatory response to CO2 of the peripheral and central chemoreflex loop before and after sustained hypoxia in man. J. Physiol. (London), 456: 71–83, 1992.Google Scholar
  4. 4.
    Berkenbosch, A. and J. DeGoede. Effects of brain hypoxia on ventilation. Eur. Respir. J., 1: 184–190, 1988.PubMedGoogle Scholar
  5. 5.
    Berkenbosch, A., J. DeGoede, D.S. Ward, C.N. Olievier and J. VanHartevelt. Dynamic response of the peripheral chemoreflex loop to changes in end-tidal O2. J. Appl. Physiol., 71: 1123–1128, 1991.PubMedGoogle Scholar
  6. 6.
    Berkenbosch, A., J. Heeringa, C.N. Olievier and E.W. Kruyt. Artificial perfusion of the ponto-medullary region of cats. A method for separation of central and peripheral effects of chemical stimulation of ventilation. Respir. Physiol., 37: 347–364, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Berkenbosch, A., C.N. Olievier, J. DeGoede and E.W. Kruyt. Effect on ventilation of papaverine administered to the brain stem of the anaesthetized cat. J. Physiol. (London), 443: 457–468, 1992.Google Scholar
  8. 8.
    Dahan, A., M.J.L.J. VandenElsen, A. Berkenbosch, J. DeGoede, I.C.W. Olievier, J.W. VanKleef and J.G. Bovill. Effects of Subanesthetic Halothane on the Ventilatory Responses to Hypercapnia and Acute Hypoxia in Healthy Volunteers. Anesthesiol, 80: 727–738, 1994.CrossRefGoogle Scholar
  9. 9.
    Easton, P.A., L.J. Slykerman and N.R. Anthonisen. Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol.,61: 906–911, 1986.PubMedGoogle Scholar
  10. 10.
    Georgopoulos, D., S. Walker and N.R. Anthonisen. Effect of sustained hypoxia on ventilatory response to CO2 in normal adults. J. Appl. Physiol.,68: 891–896, 1990.PubMedGoogle Scholar
  11. 11.
    Long, W.Q., G.G. Giesbrecht and N.R. Anthonisen. Ventilatory response to moderate hypoxia in awake chemodenervated cats. J. Appl. Physiol., 74: 805–810, 1993.PubMedGoogle Scholar
  12. 12.
    Long, W.Q., D. Lobchuk and N.R. Anthonisen. Ventilatory responses to CO2 and hypoxia after sustained hypoxia in awake cats. J. Appl. Physiol., 76: 2262–2266, 1994.PubMedGoogle Scholar
  13. 13.
    Melton, J.E., J.A. Neubauer and N.H. Edelman. CO2 sensitivity of cat phrenic neurogram during hypoxic respiratory depression. J. Appl. Physiol., 65: 736–743, 1988.PubMedGoogle Scholar
  14. 14.
    Melton, J.E., J.A. Neubauer and N.H. Edelman. GABA antagonism reverses hypoxic respiratory depression in the cat. J. Appl. Physiol.,69: 1296–1301, 1990.PubMedGoogle Scholar
  15. 15.
    Painter, R., S. Khamnei and P. Robbins. A mathematical model of the human ventilatory response to isocapnic hypoxia. J. Appl. Physiol.,74: 2007–2015, 1993.PubMedGoogle Scholar
  16. 16.
    Suzuki, A., M. Nishimura, H. Yamamoto, K. Miyamoto, F. Kishi and Y. Kawakami. No effect of brain blood flow on ventilatory depression during sustained hypoxia. J. Appl. Physiol.,66: 1674–1678, 1989.PubMedGoogle Scholar
  17. 17.
    VanBeek, J.H.G.M., A. Berkenbosch, J. DeGoede and C.N. Olievier. Effects of brain stem hypoxaemia on the regulation of breathing. Respir. Physiol., 57: 171–188, 1984.CrossRefGoogle Scholar
  18. 18.
    Vizek, M., C.K. Pickett and J.V. Weil. Biphasic ventilatory response of adult cats to sustained hypoxia has central origin. J. Appl. Physiol., 63: 1658–1664, 1987.PubMedGoogle Scholar
  19. 19.
    Weyne, J., F. VanLeuven and I. Leusen. Brain amino acids in conscious rats in chronic normocapnic and hypocapnic hypoxemia. Respir. Physiol., 31: 231–239, 1977.PubMedCrossRefGoogle Scholar
  20. 20.
    Zwart, A., G. Kwant, B. Oeseburg and W.G. Zijlstra. Human whole-blood oxygen affinity: effect of carbon monoxide. J. Appl. Physiol.,57: 14–20, 1984.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Berkenbosch
    • 1
  • C. N. Olievier
    • 1
  • J. DeGoede
    • 1
  1. 1.Department of PhysiologyUniversity of LeidenLeidenThe Netherlands

Personalised recommendations