Multiple Roles for Proneural Genes in Drosophila Neurogenesis

  • Andrew P. Jarman
  • Yuh Nung Jan
Part of the Altschul Symposia Series book series (ALSS, volume 3)

Abstract

Important questions concerning early neurogenesis include: how do certain ectodermal cells decide to become neural precursors; and how do these cells choose to differentiate as one of many possible neural subtypes? Owing to its relative simplicity, and our detailed knowledge of its anatomy and ontogeny, the Drosophila peripheral nervous system (PNS) has been a good model system for identifying and characterizing genes involved in these fate decisions.

Keywords

Migration Crest Kato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artavanis-Tsakonas S and Simpson P (1991): Choosing a cell fate: a view from the Notch locus. Trends Genet 7:403–408.PubMedGoogle Scholar
  2. Banerjee U and Zipursky SL (1990): The role of cell-cell interaction in the development of the Drosophila visual system. Neuron 4:177–187.PubMedCrossRefGoogle Scholar
  3. Basler K and Hafen E (1991): Specification of cell fate in the developing eye of Drosophila. Bioessays 13:621–631.PubMedCrossRefGoogle Scholar
  4. Bier E, Vaessin H, Younger-Shepherd S, Jan LY and Jan YN (1992): deadpan, an essential pan-neural gene in Drosophila encodes a helix-loop-helix protein similar to the hairy gene product. Genes Dev 6:2137–2151.PubMedCrossRefGoogle Scholar
  5. Bodmer R, Barbel S, Shepherd S, Jack JW, Jan LY and Jan YN (1987): Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51:293–307.PubMedCrossRefGoogle Scholar
  6. Brand M, Jarman AP, Jan LY and Jan YN (1993): asense is a Drosophila neural precursor gene and is capable of initiating sense organ development. Development 119:1–17.PubMedGoogle Scholar
  7. Cabrera CV and Alonso MC (1991): Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J 10:965–973.Google Scholar
  8. Campos-Ortega JA (1988): Cellular interactions during early neurogenesis in Drosophila melanogaster. Trends Neurosci 11:400–405.PubMedCrossRefGoogle Scholar
  9. Campuzano S and Modolell J (1992): Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet 8:202–208.PubMedGoogle Scholar
  10. Caudy M, Grell EH, Dambly-Chaudière C, Ghysen A, Jan LY and Jan YN (1988): The maternal sex determination gene daughterless has a zygotic activity necessary for the formation of peripheral neurons in Drosophila. Genes dev 2:843–852.PubMedCrossRefGoogle Scholar
  11. Cubas P, de Celis J-F, Campuzano S and Modolell J (1991): Proneural clusters of achaetescute expression and the generation of sensory organs in the Drosophila wing disc. Genes Dev 5:996–1008.PubMedCrossRefGoogle Scholar
  12. Dambly-Chaudière C and Ghysen A (1987): Independent subpatterns of sense organs require independent genes of the achaete-scute complex in Drosophila larvae. Genes Dev 1:297–306.CrossRefGoogle Scholar
  13. Dambly-Chaudière C, Jamet E, Burri M, Bopp D, Basler K, Hafen E, Dumont N, Spielmann P, Ghysen A and Noll M (1991): The paired box gene pox neuro: a determinant of poly-innervated sense organs in Drosophila. Cell 69:159–172.CrossRefGoogle Scholar
  14. Ghysen A and Dambly-Chaudière C (1989): Genesis of the Drosophila peripheral nervous system. Trends Genet 5:251–255.PubMedCrossRefGoogle Scholar
  15. Ghysen A, Dambly-Chaudière C, Jan LY and Jan YN (1993): Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 7:723–733.PubMedCrossRefGoogle Scholar
  16. Guillomot F, Lo L-C, Johnson JE, Auerbach A, Anderson DJ and Joyner AL (1993): Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476.CrossRefGoogle Scholar
  17. Gurdon JB, Lemaire P and Kato K (1993): Community effects and related phenomena in development. Cell 75:831–834.PubMedCrossRefGoogle Scholar
  18. Higashijima S, Michiue T, Emori Y and Saigo K (1992): Subtype determination of Drosophila embryonic external sensory organs by redundant homeobox genes BarH1 and BarH2. Genes Dev 6:1005–1018.PubMedCrossRefGoogle Scholar
  19. Jan YN and Jan LY (1990): Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends Neurosci 13:493–498.PubMedCrossRefGoogle Scholar
  20. Jarman AP, Grau Y, Jan LY and Jan YN (1993a): atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73:1307–1321.CrossRefGoogle Scholar
  21. Jarman AP, Brand M, Jan LY and Jan YN (1993b): The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors. Development 119:19–29.Google Scholar
  22. Jarman AP, Grell E, Ackerman L, Jan LY and Jan YN (1994): atonal is the proneural gene for Drosophila photoreceptors. Nature 369:398–400.PubMedCrossRefGoogle Scholar
  23. Jiménez F and Campos-Ortega JA (1987): Genes in the subdivision lb of the Drosophila melanogaster X-chromosome and their influence on neural development. J Neurogenet 4:179.PubMedGoogle Scholar
  24. Johnson JE, Birren SJ and Anderson DJ (1990): Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 346:858–861.PubMedCrossRefGoogle Scholar
  25. Karpilow J, Kolodkin A, Bork T and Venkatesh T (1989): Neuronal development in the Drosophila compound eye: rap gene function is required in photoreceptor cell R8 for ommatidial pattern formation. Genes Dev 3:1834–1844.PubMedCrossRefGoogle Scholar
  26. Lo L-C, Johnson JE, Wuenschell CW, Saito T and Anderson DJ (1991): Mammalian achaete-scute homolog 1 is transiently expressed by spatially-restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5:1524–1537.PubMedCrossRefGoogle Scholar
  27. McIver S (1985): Mechanoreception. In Gilbert LI and Kerkut DA (eds): “Comprehensive Insect Physiology, Biochemisty and Pharmacology,” Vol 6. New York/London: Pergamon Press.Google Scholar
  28. Moses K, Ellis MC and Rubin GM (1989): The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature 340:531–536.PubMedCrossRefGoogle Scholar
  29. Murre C, Schonleber McCaw P, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB, Weintraub H and Baltimore D (1989): Interactions between heterologous helix-loop-helix protein generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.PubMedCrossRefGoogle Scholar
  30. Ready DF (1989): A multifaceted approach to neural development. Trends Neurosci 12:102–110.PubMedCrossRefGoogle Scholar
  31. Rodríguez I, Hernandez R, Modolell J and Ruiz-Gómez M (1990): Competence to develop sensory organs is temporally and spatially regulated in Drosophila imaginal primordia. EMBO J 9:3583–3592.PubMedGoogle Scholar
  32. Romani S, Campuzano S, Macagno E and Modolell J (1989): Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev 3:997–1007.PubMedCrossRefGoogle Scholar
  33. Rubin GM (1991): Signal transduction and the fate of the R7 photoreceptor in Drosophila. Trends Genet 7:372–377.PubMedGoogle Scholar
  34. Ruiz-Gómez M and Modolell J (1987): Deletion analysis of the achaete-scute locus of Drosophila melanoaster. Genes Dev 1:1238–1246.PubMedCrossRefGoogle Scholar
  35. Skeath JB and Carroll SB (1991): Regulation of achaete-scute gene expression and sensory organ formation in the Drosophila wing. Genes Dev 5:984–995.PubMedCrossRefGoogle Scholar
  36. Skeath JB, Panganiban G, Selegue J and Carroll SB (1992): Gene regulation in two dimensions: the proneural achaete and scute genes are controlled by combinations of axis-patterning genes through a common intergenic control region. Genes Dev 6:2606–2619.PubMedCrossRefGoogle Scholar
  37. Tomlinson A and Ready DF (1987): Neuronal differentiation in the Drosophila ommatidium. Dev Biol 120:366–376.PubMedCrossRefGoogle Scholar
  38. Turner DL and Weintraub H (1994): Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8:1434–1447.PubMedCrossRefGoogle Scholar
  39. Vaessin H, Grell E, Wolff E, Bier E, Jan LY and Jan YN (1991): prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67:941–953.PubMedCrossRefGoogle Scholar
  40. Van Doren M, Ellis HM and Posakony JW (1991): The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless/achaete-scute protein complexes. Development 113:245–255.PubMedGoogle Scholar
  41. Zimmerman K, Shih J, Bars J, Cellazo A and Anderson DJ (1993): XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate. Development 119:221–232.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Andrew P. Jarman
    • 1
    • 2
  • Yuh Nung Jan
    • 2
  1. 1.Institute of Cell and Molecular BiologyUniversity of EdinburghEdinburghUK
  2. 2.Howard Hughes Medical Institute and Departments of Physiology & BiochemistryUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations