Genetic Mechanisms Responsible for Pattern Formation in the Vertebrate Hindbrain: Regulation of Hoxb-1

  • Michèle Studer
  • Heather Marshall
  • Heike Pöpperl
  • Atsushi Kuroiwa
  • Robb Krumlauf
Part of the Altschul Symposia Series book series (ALSS, volume 3)


During development of the vertebrate nervous system a process of segmentation, that will give rise to the generation of morphologically repeated units called rhombomeres (r), occurs in the hindbrain (reviewed in Lumsden, 1990; Wilkinson and Krumlauf, 1990). The formation of rhombomeres is correlated with the process of neurogenesis involving the reticular formation and the branchial motor system. Each branchial motor nucleus occupies a distinct position in the hindbrain and is derived from neurons in two adjacent rhombomeres. These neurons lie in register with the appropriate branchial arch, in a two-segment repetition pattern (Lumsden and Keynes, 1989). Boundaries between even and odd numbered rhombomeres are formed progressively in an order that does not follow a strict anterior to posterior progression (Vaage, 1969; Lumsden, 1990). To understand more about the establishment and formation of rhombomere boundaries, cell lineage studies have been performed in the chick. Single cell labelling experiments have shown that cell mixing only occurs between neighbouring segments before the boundaries between future odd and even numbered rhombomeres are formed (Wilkinson et al., 1989a; Guthrie and Lumsden, 1991; Guthrie et al., 1993). After boundary formation, rhombomeres become lineage-restricted cellular compartments, where cells are committed to a specific segment, hence each segment can maintain a distinct regional identity (Fraser et al., 1990; Birgbauer and Fraser, 1994).


Retinoic Acid Homeobox Gene Retinoic Acid Receptor Zinc Finger Gene Retinoic Acid Response Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akam M (1987): The molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22.PubMedGoogle Scholar
  2. Awgulewitsch A and Jacobs D (1992): Deformed autoregulatory element from Drosophila functions in a conserved manner in transgenic mice. Nature 358: 341–345.PubMedCrossRefGoogle Scholar
  3. Birgbauer E and Fraser SE (1984): Violation of cell lineage restriction compartments in the chick hindbrain. Development 120: 1347–1356.Google Scholar
  4. Boncinelli E, Somma R, Acampora D, Pannese M, D’Esposito M, Faiella A and Simeone A (1988): Organization of human homeobox genes. Hum Reprod 3: 880–886.PubMedGoogle Scholar
  5. Boncinelli E, Simeone A, Acampora D and Mavilio F (1991): HOX gene activation by retinoic acid. TIG 7: 329–334.PubMedGoogle Scholar
  6. Carpenter E, Goddard J, Chisaka O, Manley N and Capecchi M (1993): Loss of Hox-al (Hox-1.6) function results in reorganisation of the murine hindbrain. Development 118: 1063–1075.PubMedGoogle Scholar
  7. Chisaka O, Musci T and Capecchi M (1992): Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355: 516–520.PubMedCrossRefGoogle Scholar
  8. Conlon R and Rossant J (1992): Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116: 357–368.PubMedGoogle Scholar
  9. Dekker E-J, Pannese M, Houtzager E, Boncinelli E and Durston A (1993): Colinearity in the Xenopus laevis Hox-2 complex. Mech Development 40: 3–12.CrossRefGoogle Scholar
  10. Dollé P, Lufkin T, Krumlauf R, Mark M, Duboule D and Chambon P (1993): Local alterations of Krox-20 and Hox gene expression in the hindbrain of Hox-al (Hox-1.6) homozygote null mutant embryos. Proc Natl Acad Sci USA 90: 7666–7670.PubMedCrossRefGoogle Scholar
  11. Duboule D and Dollé P (1989): The structural and functinal organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8: 1497–1505.PubMedGoogle Scholar
  12. Fraser S, Keynes R and Lumsden A (1990): Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344: 431–435.PubMedCrossRefGoogle Scholar
  13. Frohman M, Boyle M and Martin G (1990): Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 110: 589–607.PubMedGoogle Scholar
  14. Graham A, Papalopulu N and Krumlauf R (1989): The murine and Drosophila homeobox clusters have common features of organisation and expression. Cell 57: 367–378.PubMedCrossRefGoogle Scholar
  15. Guthrie S and Lumsden A (1991): Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112: 221–229.PubMedGoogle Scholar
  16. Guthrie S, Muchamore I, Marshall H, Kuroiwa A, Krumlauf R and Lumsden A (1992): Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356: 157–159.PubMedCrossRefGoogle Scholar
  17. Guthrie S, Prince V and Lumsden A (1993): Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118: 527–538.PubMedGoogle Scholar
  18. Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E and Krumlauf R (1991): A distinct Hox code for the branchial region of the head. Nature 353: 861–864.PubMedCrossRefGoogle Scholar
  19. Ingham P (1988): The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34.PubMedCrossRefGoogle Scholar
  20. Ip YT, Levine M and Small SJ (1992): The bicoid and dorsal morphogens use a similar strategy to make stripes in the Drosophila embryo. J Cell Sci 16(Suppl): 33–38.Google Scholar
  21. Izpisua-Belmonte J, Falkenstein H, Dolle P, Renucci A and Duboule D (1991): Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body. Embo J 10: 2279–2289.PubMedGoogle Scholar
  22. Jackie H, Hoch M, Pankratz MJ, Gerwin N, Sauer F and Bronner G (1992): Transcriptional control by Drosophila gap genes. J Cell Sci 16(Suppl): 39–51.Google Scholar
  23. Kessel M (1993): Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron 10: 379–393.PubMedCrossRefGoogle Scholar
  24. Kliewer SA, Umesono K, Mangelsdorf DJ and Evans RM (1992): Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355: 446–449.PubMedCrossRefGoogle Scholar
  25. Krumlauf R (1992): Evolution of the vertebrate Hox homeobox genes. Bioessays 14: 245–252.PubMedCrossRefGoogle Scholar
  26. Kuratani SC and Eichele G (1993): Rhombomere transposition repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein. Development 117: 105–117.PubMedGoogle Scholar
  27. Langston AW and Gudas LJ (1992): Identification of a retinoic acid responsive enhancer 3’ of the murine homeobox gene Hox-1.6. Mech Dev 38: 217–228.PubMedCrossRefGoogle Scholar
  28. Leid M Kastner P and Chambon P (1992): Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17: 427–433.PubMedCrossRefGoogle Scholar
  29. Lewis E (1978): A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.PubMedCrossRefGoogle Scholar
  30. Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M and Chambon P (1993): Function of retinoic acid receptor g in the mouse. Cell 73: 643–658.PubMedCrossRefGoogle Scholar
  31. Lufkin T, Dierich A, LeMeur M, Mark M and Chambon P (1991): Disruption of the Hox1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66: 1105–1119.PubMedCrossRefGoogle Scholar
  32. Lumsden A (1990): The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13: 329–335.PubMedCrossRefGoogle Scholar
  33. Lumsden A and Keynes R (1989): Segmental patterns of neuronal development in the chick hindbrain. Nature 337: 424–428.PubMedCrossRefGoogle Scholar
  34. Malicki J, Cianetti L, Peschle C and McGinnis W (1992): A human HOX 4B regulatory element provides head-specific expression in Drosophila embryos. Nature 358: 345–347.PubMedCrossRefGoogle Scholar
  35. Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dollé P, Gorry P, Lumsden A and Chambon P (1993): Two rhombomeres are altered in Hox-al null mutant mice. Development 119: 319–338.PubMedGoogle Scholar
  36. Marshall H, Nonchev S, Sham M-H, Muchamore I, Lumsden A and Krumlauf R (1992): Retinoic acid alters the hindbrain Hox code and induces the transformation of rhombomeres 2/3 into a rhombomere 4/5 identity. Nature 360: 737–741.PubMedCrossRefGoogle Scholar
  37. Marshall H, Studer M, Pöpperl H, Aparicio S, Kuroiwa A, Brenner S and Krumlauf R (1994): A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370: 567–571.PubMedCrossRefGoogle Scholar
  38. McGinnis W and Krumlauf R (1992): Homeobox genes and axial patterning. Cell 68: 283–302.PubMedCrossRefGoogle Scholar
  39. Morriss-Kay G (1993): Retinoic acid and craniofacial development: molecules and morphogenesis. Bioessays 15: 9–15.PubMedCrossRefGoogle Scholar
  40. Morriss-Kay G, Murphy P, Hill R and Davidson D (1991): Effects of retinoic acid on expression of Hox 2.9 and Krox 20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 10: 2985–2996.PubMedGoogle Scholar
  41. Murphy P and Hill R (1991): Expression of mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111: 61–74.PubMedGoogle Scholar
  42. Murphy P, Davidson D and Hill R (1989): Segment-specific expression of a homeoboxcontaining gene in the mouse hindbrain. Nature 341: 156–159.PubMedCrossRefGoogle Scholar
  43. Papalopulu N, Lovell-Badge R and Krumlauf R (1991): The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acid Res 19: 5497–5506.PubMedCrossRefGoogle Scholar
  44. Puschel A, Balling R and Gruss P (1990): Postion-specific activity of the Hox 1.1 promoter in transgenic mice. Development 108: 435–442.PubMedGoogle Scholar
  45. Schneider-Maunoury S, Topilko P, Seitanidou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C and Charnay P (1993): Disruption of Krox-20 results in elimination of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: 1199–1214.PubMedCrossRefGoogle Scholar
  46. Scott MP (1992): Vertebrate Homeobox Gene Nomenclature. Cell 71: 551–553.PubMedCrossRefGoogle Scholar
  47. Scott MP, Tamkun JW and Hartzell GW 3rd (1989): The structure and function of the homeodomain. Biochim. Biophys. Acta 989: 25–48.Google Scholar
  48. Sham M-H, Hunt P, Nonchev S, Papalopulu N, Graham A, Boncinelli E and Krumlauf R (1992): Analysis of the murine Hox-2.7 gene: conserved alternative transcripts with differential distributions in the nervous system and the potential for shared regulatory regions. EMBO J 11: 1825–1836.PubMedGoogle Scholar
  49. Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Das Gupta R, Whiting J, Wilkinson D, Charnay P and Krumlauf R (1993): The zinc finger gene Krox-20 regulates Hox-b2 during hindbrain segmentation. Cell 72: 183–196.PubMedCrossRefGoogle Scholar
  50. Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E and Mavilio F (1990): Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766.PubMedCrossRefGoogle Scholar
  51. Simeone A, Acampora D, Nigro V, Faiella A, D’Esposito M, Stornaiuolo A, Mavilio F and Boncinelli E (1991): Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech Develop 33: 215–227.CrossRefGoogle Scholar
  52. Studer M, Pöpperl M, Marshall H, Kuroiwa A and Krumlauf R (1994): Role of conserved retinoic response element in rhombomeric restriction of Hoxb-1. Science 265: 1728–1732.PubMedCrossRefGoogle Scholar
  53. Stunnenberg H (1993): Mechanisms of transactivation by retinoic acid receptors. Bioessays 15: 309–315.PubMedCrossRefGoogle Scholar
  54. Sundin O and Eichele G (1990): A horneo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev 4: 1267–1276.PubMedCrossRefGoogle Scholar
  55. Sundin O and Eichele G (1992): An early marker of axial pattern in the chick embryo and its respecification by retinoic acid. Development 114: 841–852.PubMedGoogle Scholar
  56. Swiatek PJ and Gridley T (1993): Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox 20. Genes Dev 7: 2071–2084.PubMedCrossRefGoogle Scholar
  57. Vaage S (1969): The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Adv Anat Embryol Cell Biol 41: 1–88.Google Scholar
  58. Whiting J, Marshall H, Cook M, Krumlauf R, Rigby P, Stott D and Allemann R (1991): Multiple spatially-specific enhancers are required to reconstruct the pattern of Hox2.6 gene expression. Genes Dev 5: 2048–2059.PubMedCrossRefGoogle Scholar
  59. Wilkinson D and Krumlauf R (1990): Molecular approaches to the segmentation of the hindbrain. Trends Neurosci 13: 335–339.PubMedCrossRefGoogle Scholar
  60. Wilkinson D, Bhatt S, Chavrier P, Bravo R and Charnay P (1989a): Segment-specific expression of a zinc finger gene in the developing nervous system of the mouse. Nature 337: 461–464.CrossRefGoogle Scholar
  61. Wilkinson D, Bhatt S, Cook M, Boncinelli E and Krumlauf R (1989b): Segmental expression of Hox 2 homeobox-containing genes in the developing mouse hindbrain. Nature 341: 405–409.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michèle Studer
    • 1
  • Heather Marshall
    • 1
  • Heike Pöpperl
    • 1
  • Atsushi Kuroiwa
    • 2
  • Robb Krumlauf
    • 1
  1. 1.Laboratory of Developmental NeurobiologyNational Institute for Medical ResearchLondonUK
  2. 2.Department of Molecular Biology, School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations