Advances in the Understanding of the Molecular Pathogenesis of Aggressive B Cell Lymphomas

  • Katarina Cechova
  • Wei Gu
  • Bihui H. Ye
  • Francesco Lo Coco
  • Chih-Chao Chang
  • Jiandong Zhang
  • Anna Migliazza
  • Wilfredo Mellado
  • Huifeng Niu
  • Riccardo Dalla-Favera
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 6)


Non-Hodgkin lymphoma (NHL) include neoplasms originating from lymphoid cells and characterized by a high degree of biological and clinical heterogeneity (for review see Magrath, 1990). Most NHL derive from the B-cell lineage, in particular from mature B-cells characterized by rearranged immunoglobulin (Ig) heavy and light chain genes and by the expression of cell surface Ig and B-cell associated markers. The wide clinico-pathological heterogeneity of NHL correlates with distinct genetic lesions, particularly chromosomal translocations, associated with its pathogenesis (Table 1; Gaidano and Dalla-Favera, 1993). Among low-grade NHL, “mantle zone” lymphoma are associated in 50% of cases with the t(11;14) translocation involving the juxtaposition of the IgH locus to the BCL-1/PRAD-1/cyclin D1 gene coding for a protein involved in the control of cell cycle progression (Tsujimoto et al., 1984; Motokura et al., 1991; Raffeid et al., 1991). In follicular-type NHL(FL), the t(14;18) translocation juxtaposes the IgH locus to BCL-2 (Bakhshi et al., 1985; Tsujimoto et al., 1984; Cleary et al., 1985), a gene coding for a protein that prevents programmed cell death or apoptosis (Korsmeyer, 1992). After years of indolent course, a significant fraction of FL undergoes histologic transformation and clinical progression into Diffuse Large Cell Lymphoma (DLCL), an event which is associated with loss or mutations of the p53 tumor suppressor gene (Lo Coco et al., 1993). “De novo” DLCL are associated with rearrangements and deregulation of the BCL-6 gene, which codes for a zinc-finger transcription factor (Ye et al., 1993a, 1993b; Kerckaert et al., 1993). In Burkitt Lymphoma (BL), the t(8;14), t(8;22), and t(2;8) chromosomal translocations lead to the deregulated expression of the c-Myc proto-oncogene by juxtaposition to one of the Ig loci (Dalla-Favera et al., 1982; Taub et al., 1982; Dalla-Favera et aI., 1983; Dalla-Favera, 1991). A sizable fraction (35%) ofBL are also associated with loss or mutations of the p53 gene (Gaidano et aI., 1991).


Chronic Lymphocytic Leukemia Acute Promyelocytic Leukemia Chromosomal Translocation Burkitt Lymphoma Homing Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakhshi, A., J.P. Jensen, P. Goldman, J.J. Wright, O.W. McBride, A.L. Epstein, and S.J. Korsmeyer. 1985. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41: 889.CrossRefGoogle Scholar
  2. Bardwell, V.J. and R. Treisman. 1994. The POZ domain: A conserved protein-protein interaction motif. Genes Dev. 8:1664.PubMedCrossRefGoogle Scholar
  3. Baron, B.W., G. Nucifora, N. McCabe, R. Espinosa III, M.M. Le Beau, and T.W. McKeithan. 1993. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc. Natl. Acad. Sci. USA 90:5262.PubMedCrossRefGoogle Scholar
  4. Bastard, C, H. Tilly, B. Lenormand, C. Bigorgne, D. Boulet, A. Kunlin, M. Monconduit, and H. Piguet. 1992. Translocations involving band 3q37 and Ig gene regions in non-Hodgkin’s lymphoma. Blood 79: 2527.PubMedGoogle Scholar
  5. Bhatia, K. et al. 1993. Point mutations in the c-Myc transactivation domain are frequent occurence in Burkitt’s lymphoma and mouse plasmocytoma. Nature Genet. 5:56PubMedCrossRefGoogle Scholar
  6. Blackwell, T. K., Kretzner, l., Blackwood, E. M., Eisenman, R. N., and Weintraub. 1990. Sequence-specific DNA binding by the c-Myc protein. Science 250: 1149PubMedCrossRefGoogle Scholar
  7. Blackwood, E. M., and Eisenman, R. N. 1991. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA binding complex with Myc. Science 251:1211–1217.PubMedCrossRefGoogle Scholar
  8. Blackwood, E. M., Luscher, B., and Eisenman, R. N. 1992. Myc and Max associate in vivo. Genes & Dev. 6: 71–80.CrossRefGoogle Scholar
  9. Cesarman, E., R. Dalla-Favera, D. Bentley, M. Groudine. 1987. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238: 1272.PubMedCrossRefGoogle Scholar
  10. Chaganti, R.S.K., L.A. Doucette, K. Offit, D.A. Filippa, G.J. Allen, M.R. Condon, S.C. Jhanwar, B.D. Clarkson, and P.H. Lieberman. 1989. Specific translocationsin non-Hodgkin’s lymphoma: incidence, molecular detection, and histological and clinical correlations. Cancer Cells 7:33. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.Google Scholar
  11. Chardin, P., G. Courtois, M.-G. Mattei, and S. Gisselbrecht. 1991. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucleic Acid Res. 19:1431PubMedCrossRefGoogle Scholar
  12. Chen, Z., N.J. Brand, A. Chen, S. Chen, J.-H. Tong, Z.-Y. Wang, S. Waxman, and A. Zelent. 1993. Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 12:1161.PubMedGoogle Scholar
  13. Cleary, M.L. and J. Sklar. 1985. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 82:7439.PubMedCrossRefGoogle Scholar
  14. Dalla-Favera, R. 1991. Chromosomal translocations invoving the c-myc oncogene and their role in the pathogenesis of B-cell neoplasia. in The Origins of Human Cancer , J. Brugge, T. Curran, E. Harlow, and F. McCormick, eds. (Cold Spring Harbor Laboratories Press), pp. 543–551.Google Scholar
  15. Dalla-Favera, R. 1991. Chromosomal translocations involving the c-myc oncogene and their role in the pathogenesis of B cell neoplasia. Origin of Human Cancer (eds J. Brugge, T. Curran, E. Harlow, and F. McCormick ). pp. 543–541. Cold Spring Harbor Laboratory (publ.).Google Scholar
  16. Dalla-Favera, R., M. Bregni, J. Erickson, D. Patterson, R.C. Gallo, and C.M. Croce. 1982. Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Nat. Acad. Sci. USA 79: 7824.PubMedCrossRefGoogle Scholar
  17. Dalla-Favera, R., S. Martinotti, R.C. Gallo, J. Erikson, and C.M. Croce. 1983. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219: 963.PubMedCrossRefGoogle Scholar
  18. Davis, M., S. Malcolm, T.H. Rabbitts. 1984. Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature 308: 286.PubMedCrossRefGoogle Scholar
  19. de The’ H, C. Lavau, A. Marchio, C. Chomienne, L. Degos, and A. Dejean. 1991. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675.PubMedCrossRefGoogle Scholar
  20. Dellefroid, E.J., D.A. Poncelet, P.J. Lecocq, O. Revelant, and J.A. Martial. 1991. The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Nat. Acad. Sci. USA 88:3608.CrossRefGoogle Scholar
  21. Deweindt, C., J-P. Kerckaert, H. Tilly, S. Quief, V.C. Nguyen, and C Bastard. 1993. Cloning of a breakpoint cluster region at band 3q27 involved in human non-Hodgkin’s lymphoma. Genes, Chrom, & Cancer 8:149.CrossRefGoogle Scholar
  22. Dibello, P.R., D.A. Withers, C.A. Bayer, J.W. Fristrom, and G.M. Guild. 1991.The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129:385PubMedGoogle Scholar
  23. Djabali, M., L. Selleri, P. Parry, M. Bower, B.D. Young, and G.A. Evans. 1992. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nature Genet. 2:113.PubMedCrossRefGoogle Scholar
  24. Eick, D., G.W. Bornkamm. 1989. Expression of normal and translocated c-myc alleles in Burkitt’s lymphoma cells: evidence for different regulation. EMBO J. 8: 1965.PubMedGoogle Scholar
  25. El-Baradi T and Pieler T. 1991. Zinc finger proteins: what we know and what we would like to know. Mech .Dev. 35:155.PubMedCrossRefGoogle Scholar
  26. Ewen, M. E. et al. 1989. AnN-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and second cellular protein, p120.Cell 58: 257PubMedCrossRefGoogle Scholar
  27. Ewen, M.E, Y. Xing, J. B. Larence, D. M. Livingston. 1991. Molecular cloning, chromosomal mapping, and expression of the cDNA for p 107, a retinoblastoma gene product-related protein. ibid. 66: 1155.Google Scholar
  28. Fichelson, S., F. Dreyfus, R. Berger, J. Melle, C. Bastard, J.M. Miclea, and S. Gisselbrecht 1992. Evi-1 expression in leukemic patients with rearrangements of the 3q25-q28 chromosomal region. Leukemia 6:93.PubMedGoogle Scholar
  29. Gaidano, G. and R. Dalla-Favera. 1993. Biologic and molecular characterization of non-Hodgkin’s Lymphoma. Current Opinion in Oncology 5:776.PubMedCrossRefGoogle Scholar
  30. Gaidano, G., P. Ballerini, J. Gong, A. Neri, E.W. Newcomb, I.T. Magrath, D.K. Knowles, and R. Dalla-Favera. 1991. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 88:5413.PubMedCrossRefGoogle Scholar
  31. Gellman, E.P., M.C. Psallidopoulos,T.S. Papas, R. Dalla-Favera. 1983. Identification of reciprocal translocation points within the c-myc and immunoglobulin m loci in a Burkitt lymphoma. Nature 306: 799.CrossRefGoogle Scholar
  32. Gribben, J.G., D. Neuberg, A.S. Freedman, C.D. Gimmi, K.W. Pesek, M. Barber, L. Saporito, S.D. Woo, F. Coral, N. Spector, S.N. Rabinowe, M.L. Grossbard, J. Ritz, and L. Nadler. 1993. Detection by polymerase chain reaction of residual cells with the BCL-2 translocation is associated with increased risk of relapse after autologous bone marrow transplantation for B-cell lymphoma. Blood 81:3449.PubMedGoogle Scholar
  33. Grignani, F., L. Lombardi, G. Inghirami, L. Sternas, K. Cechova, R. Dalla-Favera. 1990. Negative autoregu-lation of c-myc gene expression is inactivated in transformed cells. EMBO J. 9: 3913.PubMedGoogle Scholar
  34. Gu, W., Cechova, K., Tassi, V., Dalla-Favera, R. 1993. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc. Natl. Acad. Sci. 90 : 2935PubMedCrossRefGoogle Scholar
  35. Gu, Y., T. Nakamura, H. Alder, R. Prasad, O. Canaani, G. Cimino, C.M. Croce, and E. Canaani. 1992. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71:701.PubMedCrossRefGoogle Scholar
  36. Gu. W., Bhatia, K., Magrath, I.T., Dang, C.V., Dalla-Favera, R. 1994. Binding and suppression of the Myc transcriptional activation domain by p107. Science 264: 251PubMedCrossRefGoogle Scholar
  37. Haber, D.A., A.J. Buckler, T. Glaser, K.M. Call, J. Pelletier, R.L. Sohn, E.C. Douglass, and D.E. Housman. 1990. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 61:1257.PubMedCrossRefGoogle Scholar
  38. Halazonetis, T., and Kandil, A. N. 1991. Determination of the c-Myc DNA-binding site. Proc. Natl. Acad. Sci. 88: 6162–6166.PubMedCrossRefGoogle Scholar
  39. Haluska, F.G., Y. Tsujimoto, C.M. Croce. 1987. Oncogene activation by chromosomal translocation in human malignancy. Ann. Rev. Genet. 21: 321.PubMedCrossRefGoogle Scholar
  40. Harrison, S.D. and A.A. Travers. 1990. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 9:207.PubMedGoogle Scholar
  41. Hollis, G.F., K.F. Mitchell, J. Battey, H. Potter, R. Taub, G.M. Lenoir, P. Leder. 1984. A variant translocation places the lambda immunoglobulin genes 3’ to the c-myc oncogene in Burkitt’s lymphoma. Nature 307: 752.PubMedCrossRefGoogle Scholar
  42. Hu, Q.J., N. Dyson, E. Harlow. 1990. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations, EMBO 9:1147.Google Scholar
  43. Kakizuka, A., W.H. Miller, Jr, K. Umesono, R.P. Warrell Jr., S.R. Frankel, V.V. Murty, E. Dmitrovsky, and R.M. Evans. 1991. Chromosomal translocation t(15;17) in human acute promyelocytc leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663.PubMedCrossRefGoogle Scholar
  44. Kato, G. J., Barret, J., Villa -Garcia, M., and Dang, C. V. 1990. An amino-terminal domain of c-myc required for transformation activates transcription. Mol. Cell. Biol. 10: 5914PubMedGoogle Scholar
  45. Kato, G. J., Lee, W. M. F., Chen, L., and Dang, C. V. 1992. Max: functional domains and interaction with c-Myc. Genes & Dev. 6: 81.CrossRefGoogle Scholar
  46. Kerckaert, J-P., C. Deweindt, H. Tilly, S. Quief, G. Lecocq, and C. Bastard. 1993. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphoma. Nature Genet. 5:66.PubMedCrossRefGoogle Scholar
  47. Knochel, W., A. Poting, M. Koster, T. el Baradi, W. Nietfeld, T. Bouwmeester, and T. Pieler. 1989. Evolutionary conserved modules associated with zinc fingers in Xenopus laevis. Proc. Natl. Acad. Sci. USA 86:6097PubMedCrossRefGoogle Scholar
  48. Koonin, E.V., T.G. Senkevich, and V.I. Chernos. 1992. A family of DNA virus genes that consists of fused portions of unrelated cellular genes. Trends Biochem.Sci. 17:213.PubMedCrossRefGoogle Scholar
  49. Korsmeyer, SJ. 1992. Bcl-2 initiates a new category of oncogenes: Regulators of cell death. Blood 80:879–886.PubMedGoogle Scholar
  50. Kuze, K., A. Shimizu, and T. Honju. 1991. Characterization of the enhancer region for germline transcription of the gamma 3 constant region gene of human immunoglobulin. Int. Immunol. 3:647.PubMedCrossRefGoogle Scholar
  51. Lo Coco, F., B.H. Ye, F. Lista, P. Corradini, K. Offit, D.M. Knowles, RSK. Chaganti, and R. Dalla-Favera. 1994. Rearrangements of the BCL-6 gene in diffuse large-cell non-Hodgkin lymphoma. Blood 83:1757.PubMedGoogle Scholar
  52. LoCoco, F., G. Gaidano, D.C. Louie, K. Offit, RSK. Chaganti, and R. Dalla-Favera. 1993. p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 82:2289.PubMedGoogle Scholar
  53. Luscher, B.,and Eisenman, R. N. 1990. New light on Myc and Myb. Part I. Myc. Genes & Dev. 4: 2025.CrossRefGoogle Scholar
  54. Magrath, I. 1990. Lymphocyte ontogeny: a conceptual basis for understanding neoplasia of the immune system. In The non-Hodgkin’s lymphoma. (ed. I. Magrath) pp. 29–48.Williams & Wilkins, Baltimore.Google Scholar
  55. Marcu, K.B., Bossone, S.A., Patel, A.J. 1992. Myc function and regulation. Ann. Rev. Biochem. 61:809–860.PubMedCrossRefGoogle Scholar
  56. McGuire, E.A., R.D. Hockett, K.M. Pollock, M.F. Bartholdi, S.J. O’Brien, and S.J. Korsmeyer. 1989. The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol. Cell Biol. 9:2124.PubMedGoogle Scholar
  57. Miki, T., N. Kawamata, S. Hirosawa, and N. Aoki. 1994. Gene involved in the 3q27 translocation associated with B-cell lymphoma, BCL-5, encodes a Kruppel-like Zinc-finger protein. Blood 83:26.PubMedGoogle Scholar
  58. Morishita, K., D.S. Parker, M.L. Mucenski, N.A. Jenkins, N.G. Copeland, and J.N. Ihle. 1988. Retroviral activation of a novel gene encoding a zinc finger protein in IL3-dependent myeloid leukemia cell lines. Cell 54:831.PubMedCrossRefGoogle Scholar
  59. Motokura, T., T. Bloom, K.H. Goo, H. Juppner, J.V. Ruderman, H.M. Kronenberg, and A. Arnold. 1991. A novel cyclin encoded by a bcl-1 linked candidate oncogene. Nature 350:512.PubMedCrossRefGoogle Scholar
  60. Neri, A., F. Barriga, D.M. Knowles, I.T. Magrath, R. Dalla-Favera. 1988. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc. Natl. Acad. 85:2748CrossRefGoogle Scholar
  61. Offit, K., F. LoCoco, D.C. Louie, N.Z. Parsa, D. Leong, C. Portlock, B.H. Ye, F. Lista, D.A. Filippa, A. Rosenbaum, M. Ladanyi, R. Dalla-Favera, and RSK. Chaganti. 1994. Rearrangement of the BCL6 gene as a prognostic marker in diffuse large cell lymphoma. N. Engl.J. Med. 331:74PubMedCrossRefGoogle Scholar
  62. Offit, K., S. Jhanwar, S.A. Ebrahim, D. Filippa, B.D. Clarkson, RSK. Chaganti. 1989. t(3;22)(q27;q11): A novel translocation associated with diffuse non-Hodgkin’s lymphoma. Blood 74: 1876.PubMedGoogle Scholar
  63. Pandolfi, P.P., F. Grignani, M. Alcalay, A. Mencarelli, A. Biondi, F. Lo Coco, F. Grignani, and P.G. Pelicci. 1991. Structure and origin of the acute promyelocytic leukemia myl/RARα cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6:1285.PubMedGoogle Scholar
  64. Pelicci, P.G., D.K. Knowles, I. Magrath, R. Dalla-Favera. 1986b. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc. Natl. Acad. Sci.U.S.A. 83:2984.PubMedCrossRefGoogle Scholar
  65. Prendergast, G. C., and Ziff, E. B. 1991. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251: 186.PubMedCrossRefGoogle Scholar
  66. Prendergast, G. C., Lawe, D., and Ziff, E. B. 1991. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65: 395.PubMedCrossRefGoogle Scholar
  67. Qin, X.Q., T. Chittenden, D. Livingston, W. G. Kaelin. 1992. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6: 953.PubMedCrossRefGoogle Scholar
  68. Raffeld, M., and E.S. Jaffe. 1991. Bcl-1, t(11;14), and mantle zone lymphomas. Blood 78: 259PubMedGoogle Scholar
  69. Rosenberg UB, Schroder C, Preiss A, A. Kienlin, S. Côté, I. Riede, and H. Jäckle. 1989. Structural homology of the product of the Drosophila Kruppel gene with Xenopus transcription factor IIIA. Nature 319:336.CrossRefGoogle Scholar
  70. Schneider, A.M., D.J. Straus, A.E. Schluger, D.A. Lowenthal, B. Koziner,. B.J. Lee, G. Wong, and B.D. Clarkson. 1990. Treatment results with an aggressive chemotherapeutic regimen (MACOP-B) for intermediate and some high grade non-Hodgkin’s lymphomas. J. Clin. Oncol. 8:94.PubMedGoogle Scholar
  71. Taub R, Kirsch I, Morton C, G.Lenoir, D. Swan, S. Tronick, S. Aaronson, and P. Leder. 1982. Translocation of c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837.PubMedCrossRefGoogle Scholar
  72. Tkachuk, D.C., S. Kohler, and M.L. Cleary. 1992. Involvement of a homolog of Drosophila Trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691.PubMedCrossRefGoogle Scholar
  73. Tsujimoto, Y., J. Yunis, L. Onorato-Showe, J. Erikson, P.C. Nowell, and C.M. Croce. 1984. Molecular cloning of the chromosomal breakpoint on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Science 224:1403.PubMedCrossRefGoogle Scholar
  74. Xue, F. and L. Cooley. 1993. Kelch encodes a component of intercellular bridges in Drosophila egg chambers.Cell 72: 681.PubMedCrossRefGoogle Scholar
  75. Yano, T. et al.. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma.On-cogene 8, 2741 (1993)Google Scholar
  76. Ye, B.H., F. Lista, F. Lo Coco, D.M. Knowles, K. Offit, RSK. Chaganti, and R. Dalla-Favera. 1993a. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large cell-lymphoma. Science 262:747.PubMedCrossRefGoogle Scholar
  77. Ye, B.H., P.H. Rao, RSK. Chaganti, and R. Dalla-Favera. 1993b. Cloning of bcl-6, the locus involved in chromosomal translocations affecting band 3q27 in B-cell lymphoma. Cancer Res. 53:2732.PubMedGoogle Scholar
  78. Zhu, L. et al. 1993. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes & Dev. 7: 1111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Katarina Cechova
    • 1
  • Wei Gu
    • 1
  • Bihui H. Ye
    • 1
  • Francesco Lo Coco
    • 1
  • Chih-Chao Chang
    • 1
  • Jiandong Zhang
    • 1
  • Anna Migliazza
    • 1
  • Wilfredo Mellado
    • 1
  • Huifeng Niu
    • 1
  • Riccardo Dalla-Favera
    • 1
  1. 1.Division of Oncology, Department of Pathology and Department of Genetics and Development College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations