Skip to main content

Special Purpose Temporal Processing in Hippocampal Fields CA1 and CA3

  • Chapter
Neural Representation of Temporal Patterns

Abstract

The kind of learning you are doing now is characterized by rapid acquisition (the speed of reading), enormous capacity (further learning does not force out or interfere with prior learning) and persistence: what you learn from a page can potentially last decades. These features are extremely unusual for any biological mechanism, for which homeostasis is the norm. The only known mechanism having these properties is synaptic long-term potentiation, or LTP, and it is therefore the leading, and currently the only, candidate mechanism for rapid, persistent, high-capacity learning. In contrast, slowly accreted learning of the kind that occurs when one learns motor skills such as riding a bicycle or playing racquetball, may be subserved by a different set of mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambros-Ingerson, J., Granger, R., and Lynch, G., 1990, Simulation of paleocortex performs hierarchical clustering, Science, 247:1344.

    Article  PubMed  CAS  Google Scholar 

  • Berger, T., 1984, Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning, Science, 224:627.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. P. and Gardner-Medwin, A., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path, J. Physiol. Lond., 232:357.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P. and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol. Lond., 232:334.

    Google Scholar 

  • Collingridge, G. L., Kehl, S. L., and McLennan, H., 1983, Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus, J. Physiol. Lond. ,334:33.

    PubMed  CAS  Google Scholar 

  • Coultrip, R., Granger, R., and Lynch, G., 1992, A cortical model of winner-take-all competition via lateral inhibition, Neural Networks, 5:47.

    Article  Google Scholar 

  • Eichenbaum, H., Kuperstein, M., Fagan, M., and Nagode, J., 1987, Cue-sampling and goal approach correlates of hippocampal unit activity in rats performing an odor-discrimination task, J. Neurosci., 7:716.

    PubMed  CAS  Google Scholar 

  • Granger, R., Ambros-Ingerson, J., and Lynch, G., 1989, Derivation of encoding characteristics of layer II cerebral cortex, J. Cognitive Neurosci., 1:61.

    Article  Google Scholar 

  • Granger, R., Whitson, J., Larson, J., and Lynch, G., 1994, Non-Hebbian properties of LTP enable high-capacity encoding of temporal sequences, Proc. Natl. Acad. Sci., 91:10104.

    Article  PubMed  CAS  Google Scholar 

  • Green, E., McNaughton, B., and Barnes, C., 1990, Exploration-dependent modulation of evoked responses in fascia dentata, J. Neurosci., 10:1455.

    PubMed  CAS  Google Scholar 

  • Grossberg, S., 1976, Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors, Biol. Cybern., 23:121.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O., 1949, “The Organization of Behaviour”, Wiley, New York, NY.

    Google Scholar 

  • Jung, M., Larson, J., and Lynch, G., 1990, Long-term potentiation of monosynaptic EPSPs in rat piriform cortex in vitro, Synapse, 6:279.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A., 1978, First occurrence of hippocampal spatial firing in a new environment, Exp. Neurol., 62:282

    Article  PubMed  CAS  Google Scholar 

  • Kanter, E. D. and Haberly, L. B., 1990, NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro, Brain Res., 525:175.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J. A., Malenka, R., and Nicoll, R., 1988, A persistent postsynaptic modification mediates long-term potentiation in the hippocampus, Neuron, 1:911.

    Article  PubMed  CAS  Google Scholar 

  • Komisaruk, B. R., 1970, Synchrony between limbic system theta activity and rhythmical behavior in rats, J. Comp. Physiol. Psychol., 70:482.

    Article  PubMed  CAS  Google Scholar 

  • Larson, J. and Lynch, G., 1986, Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events, Science, 232:985.

    Article  PubMed  CAS  Google Scholar 

  • Larson, J. and Lynch, G., 1989, Theta pattern stimulation and the induction of LTP: the sequence in which synapses are stimulated determines the degree to which they potentiate, Brain Res., 489:49.

    Article  PubMed  CAS  Google Scholar 

  • Larson, J., Wong, D., and Lynch, G., 1986, Patterned stimulation at the theta frequency is optimal for induction of long-term potentiation, Brain Res., 368:347.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. and Baudry, M., 1984, The biochemistry of memory: a new and specific hypothesis, Science, 224:1057.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. and Granger, R., 1992, Variations in synaptic plasticity and types of memory in cortico-hippocampal networks, J. Cognitive Neurosci., 4:189.

    Article  Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F., 1983, Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature, 305:719.

    Article  PubMed  CAS  Google Scholar 

  • Macrides, F., 1975, Temporal relationships between hippocampal slow waves and exploratory sniffing in hamsters, Behav. Biol., 14:295.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., 1987, Membrane and synaptic properties of identified neurons in the olfactory bulb, Prog. Neurobiol., 29:275.

    Article  PubMed  CAS  Google Scholar 

  • Mott, D. and Lewis, D., 1991, Facilitation of the induction of long-term potentiation by GABAB receptors, Science, 252:1718.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D. and Lynch, G., 1988, Long-term potentiation differentially affects two components of synaptic responses in hippocampus, Proc. Natl. Acad. Sci., 85:9346.

    Article  PubMed  CAS  Google Scholar 

  • Muller, D., Joly, M., and Lynch, G., 1988, Contributions of quisqualate and NMDA receptors to the induction and expression of LTP, Science, 242:1694.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R., 1969, Inhibitory mechanisms in the rabbit olfactory bulb: Dendrodendritic mechanisms, Brain Res., 14:157.

    Article  PubMed  CAS  Google Scholar 

  • Otto, T., Eichenbaum, H., Weiner, S., and Wible, C., 1991, Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation, Hippocampus, 1:181.

    Article  PubMed  CAS  Google Scholar 

  • Price, J. L., 1973, An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex, J. Comp. Neurol., 150:87.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S., 1909, “Histologic du Systeme Nerveux de l’Homme et des Vertebres”, Moloine, Paris.

    Google Scholar 

  • Roman, F., Staubli, U., and Lynch, G., 1987, Evidence for synaptic potentiation in a cortical network during learning, Brain Res., 418:221.

    Article  PubMed  CAS  Google Scholar 

  • Rumelhart, D. E. and Zipser, D., 1985, Feature discovery by competitive learning, Cognitive Sci., 9:75.

    Article  Google Scholar 

  • Standing, L., 1973, Learning 10,000 pictures, Quart. J. Exp. Psychol., 25:207.

    Article  CAS  Google Scholar 

  • Taketani, M., Ambros-Ingerson, J., Myers, R., Granger, R., and Lynch, G., 1992, Is field CA3 a reverberating short term memory system? Soc. Neurosci. Abstracts, 18:1211.

    Google Scholar 

  • Tanzi, E., 1893, I fatti e le induzioni nell’ odeierna istologia del sistema nervoso, Rev. Sperim. d. Frenatria et d. Medic. Legal., 19:419.

    Google Scholar 

  • von der Malsburg, C., 1973, Self-organization of orientation sensitive cells in the striate cortex, Kybernetik, 14:85.

    Article  PubMed  Google Scholar 

  • Wyss, J., 1981, Autoradiographic study of the efferent connections of entorhinal cortex in the rat, J. Comp. Neurol, 199:495.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, J., 1971, Ipsilateral afferents to the commissural zone of the fascia dentata demonstrated in decommissurated rats by silver impregnation, J. Comp. Neurol, 23:393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Granger, R., Taketani, M., Lynch, G. (1995). Special Purpose Temporal Processing in Hippocampal Fields CA1 and CA3. In: Covey, E., Hawkins, H.L., Port, R.F. (eds) Neural Representation of Temporal Patterns. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1919-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1919-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5785-8

  • Online ISBN: 978-1-4615-1919-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics