Skip to main content

Temporal Patterning in a Small Rhythmic Neural Network

  • Chapter
Book cover Neural Representation of Temporal Patterns
  • 110 Accesses

Abstract

Rhythmic motor patterns such as walking, flying, and chewing form a large part of the behavioral repertoire of most animals. It is now clear that the fundamental characteristics of such motor patterns (their rhythmicity and the sequence of movements that make up the pattern) result from the activity of relatively small neural networks that produce appropriately ordered motor outputs in the absence of timed input from either the periphery (e.g., proprioceptive inputs) or the rest of the nervous system (e.g., descending pathways) (Delcomyn, 1980). Over the last twenty years the mechanisms underlying the ability of these central pattern generator (CPG) networks to inherently produce ordered rhythmic motor outputs has been intensively studied, and a fairly deep understanding of this process has been achieved for several invertebrate model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.F., Hooper, S.L., Kepler, T., and Marder, E., 1990, Oscillating networks: modeling the pyloric circuit of the stomatogastric ganglion, in: “Proceedings of the International Joint Conference on Neural Networks”, I.E.E.E., Ann Arbor, MI.

    Google Scholar 

  • Bal, T., Nagy, F., and Moulins, M., 1988, The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators, J. Comp. Physiol. 163:715.

    Article  Google Scholar 

  • Bidaut, M., 1980, Pharmacological dissection of pyloric network of the lobster stomatogastric ganglion using picrotoxin, J. Neurophysiol. 44:1089.

    PubMed  CAS  Google Scholar 

  • Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, P.S., Mecsas, C., and Marder, E., 1990, Peptidergic modulation of a multioscillator system in the lobster. I. Activation of the cardiac sac motor pattern by the neuropeptides proctolin and red pigment concentrating hormone, J. Neurophysiol. 61:833.

    Google Scholar 

  • Dickinson, P.S., and Nagy, F., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones, J. Exp. Biol. 105:59.

    PubMed  CAS  Google Scholar 

  • Eisen, J.S., 1984, Separation and characterization of the synaptic actions of electrically coupled neurons in the stomatogastric ganglion of the lobster, Panulirus interruptus. Ph.D. thesis, Brandeis University.

    Google Scholar 

  • Eisen, J.S., and Marder, E., 1982, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons, J. Neurophysiol. 48:1392.

    PubMed  CAS  Google Scholar 

  • Eisen, J.S., and Marder, E., 1984, A mechanism for production of phase shifts in a pattern generator, J. Neurophysiol. 51:1375.

    PubMed  CAS  Google Scholar 

  • Flamm, R.E., and Harris-Warrick, R.M., 1986a, Aminergic modulation in the lobster stomatogastric ganglion. I. Effects on the motor pattern and activity of neurons within the pyloric circuit, J. Neurophysiol. 55:847.

    PubMed  CAS  Google Scholar 

  • Flamm, R.E., and Harris-Warrick, R.M., 1986b, Aminergic modulation in the lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine and serotonin within the pyloric circuit, J. Neurophysiol.55:866.

    PubMed  CAS  Google Scholar 

  • Gola, M., and Selverston, A.I., 1981, Ionic requirements for bursting activity in lobster stomatogastric neurons, J. Comp. Physiol. 145:191.

    Article  CAS  Google Scholar 

  • Graubard, K., 1978, Synaptic transmission without action potentials: input-output properties of a nonspiking presynaptic neuron, J. Neurophysiol. 41:1014.

    PubMed  CAS  Google Scholar 

  • Grillner, S., Waltén, P., Dale, N., Brodin, L., Buchanan, J., and Hill, R., 1987, Transmitters, membrane properties, and network circuitry in the control of locomotion in lamprey, Trends Neurosci. 10:34.

    Article  CAS  Google Scholar 

  • Harris-Warrick, R.M., Marder, E., Selverston, A.I., and Moulins, M., eds., 1992a, “Dynamic Biological Networks. The Stomatogastric Nervous System”, MIT Press, Cambridge, MA.

    Google Scholar 

  • Harris-Warrick, R.M., Nagy, F., and Nusbaum, M.P., 1992b, Neuromodulation of stomatogastric networks by identified neurons and transmitters, in: “Dynamic Biological Networks. The Stomatogastric Nervous System”, R.M. Harris-Warrick, E. Marder, A.I. Selverston, and M. Moulins, eds., MIT Press, Boston, MA.

    Google Scholar 

  • Hartline, D.K., 1979, Pattern generation in the lobster (Panulirus) stomatogastric ganglion. II. Pyloric network simulation, Biol. Cybern. 33:223.

    Article  PubMed  CAS  Google Scholar 

  • Hartline, D.K., 1987, Modeling stomatogastric ganglion, in “The Crustacean Stomatogastric System”, A.I. Selverston and M. Moulins, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Hooper, S.L., and Marder, E., 1987, Modulation of the lobster pyloric rhythm by the peptide, proctolin, J. Neurosci. 7:2097.

    PubMed  CAS  Google Scholar 

  • Hooper, S.L., and Moulins, M., 1989, A neuron switches from one network to another by sensory induced changes in its membrane properties, Science 244:1587.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, S.L., and Moulins, M., 1990, Flexibility in the stomatogastric nervous system of the lobster: II. Synaptic and cellular mechanisms responsible for a long lasting restructuring of the pyloric network, J. Neurophysiol. 64:1574.

    PubMed  CAS  Google Scholar 

  • Hooper, S.L., Nonnotte, L., and Moulins, M., 1990, Flexibility in the stomatogastric nervous system of the lobster: I. Sensory input induces long lasting changes in the output of the pyloric network, J. Neurophysiol. 64:1555.

    PubMed  CAS  Google Scholar 

  • Johnson, B.R., and Hooper, S.L., 1992, Overview of the stomatogastric nervous system, in “Dynamic Biological Networks. The Stomatogastric Nervous System”, R.M. Harris-Warrick, E. Marder, A.I. Selverston, and M. Moulins, eds., MIT Press, Boston, MA.

    Google Scholar 

  • Kepler, T.B., Marder, E., and Abbott, L.F., 1990, The effect of electrical coupling on the frequency of model neuronal oscillators, Science 248:83.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E., 1984, Mechanisms underlying neurotransmitter modulation of a neuronal circuit, Trends Neurosci. 7:48.

    Article  Google Scholar 

  • Marder, E., Abbott, L.F., Buchholtz, F., Epstein, I., Golowasch, J., Hooper, S.L., and Kepler, T., 1993, Physiological insights from cellular and network models of the stomatogastric nervous system of lobsters and crabs, American Zoologist 33:29.

    Google Scholar 

  • Marder, E., Abbott, L.F., Kepler, T.B., and Hooper, S.L., 1992, Modification of oscillator function by electrical coupling to non-oscillatory neurons, in “Induced Rhythms in the Brain”, E. Baser and T.H. Bullock, eds., Birkhauser, Boston.

    Google Scholar 

  • Marder, E., and Eisen, J.S., 1984a, Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters, J. Neurophysiol. 51:1362.

    PubMed  CAS  Google Scholar 

  • Marder, E., and Eisen, J.S., 1984b, Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters, J. Neurophysiol. 51:1345.

    PubMed  CAS  Google Scholar 

  • Marder, E., and Hooper, S.L., 1985, Neurotransmitter modulation of the stomatogastric ganglion of decapod crustaceans, in “Model Neural Networks and Behavior”, A.I. Selverston, ed., Plenum Press, New York, NY.

    Google Scholar 

  • Miller, J.P., 1987, Pyloric mechanisms, in “The Crustacean Stomatogastric System,” A.I. Selverston and M. Moulins, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Miller, J.P., and Selverston, A.I., 1979, Rapid killing of single neurons by irradiation of intracellularly injected dye, Science 206:702.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.P., and Selverston, A.I., 1982a, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons, J. Neurophysiol. 48:1378.

    PubMed  CAS  Google Scholar 

  • Miller, J.P., and Selverston, A.I., 1982b, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system, J. Neurophysiol. 48:1416.

    PubMed  CAS  Google Scholar 

  • Mulloney, B., Perkel, D.H., and Budelli, R.W., 1981, Motor-pattern production: interaction of chemical and electrical synapses, Brain Res. 229:25.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, F., and Dickinson, P.S., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. I. Modulation of the pyloric motor output, J. Exp. Biol. 105:33.

    PubMed  CAS  Google Scholar 

  • Nusbaum, M.P. and Marder, E., 1989, A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity, J. Neurosci. 9:1600.

    PubMed  CAS  Google Scholar 

  • Pearce, R.A., and Friesen, W.O., 1985, Intersegmental coordination of the leech swimming rhythm. II. Comparison of long and short chains of ganglia. J. Neurophysiol. 54:1460.

    PubMed  CAS  Google Scholar 

  • Raper, J.A., 1979, Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor pattern, Science 205:304.

    Article  PubMed  CAS  Google Scholar 

  • Rezer, E., and Moulins, M., 1983, Expression of the crustacean pyloric pattern generator in the intact animal, J. Comp. Physiol. 153:17.

    Article  Google Scholar 

  • Russell, D.F., and Graubard, K., 1987, Cellular and synaptic properties, in “The Crustacean Stomatogastric System”, A.I. Selverston and M. Moulins, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Russell, D.F., and Hartline, D.K., 1978, Bursting neural networks: A reexamination, Science 200:453.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D.F., and Hartline, D.K., 1982, Slow active potentials and bursting motor patterns in pyloric network of the lobster, Panulirus interruptus, J. Neurophysiol. 48:914.

    PubMed  CAS  Google Scholar 

  • Selverston, A.I., and Miller, J.P., 1980, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system, J. Neurophysiol. 44:1102.

    PubMed  CAS  Google Scholar 

  • Selverston, A.I., and Moulins, M., eds., 1987, “The Crustacean Stomatogastric System”, Springer-Verlag, Berlin.

    Google Scholar 

  • Selverston, A.I., Russell, D.F., Miller, J.P., and King, D.G., 1976, The stomatogastric nervous system: Structure and function of a small neural network, Prog. Neurobiol. 7:215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hooper, S.L. (1995). Temporal Patterning in a Small Rhythmic Neural Network. In: Covey, E., Hawkins, H.L., Port, R.F. (eds) Neural Representation of Temporal Patterns. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1919-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1919-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5785-8

  • Online ISBN: 978-1-4615-1919-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics