Representation of Temporal Patterns of Signal Amplitude in the Anuran Auditory System and Electrosensory System

  • Gary J. Rose


The temporal structure of sensory signals plays an important role in the biology of many animals including man (Emlen, 1972; Gerhardt, 1982; Heiligenberg, 1991; Kay, 1982; Rose, 1986). This chapter focuses on how temporal variations in the amplitude of acoustic or electric signals are represented in auditory systems of frogs and toads (anurans) and in the electrosensory system of a weakly electric fish.


Amplitude Modulation Periodicity Code Electric Fish Beat Rate Torus Semicircularis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, M, Hose B., and Langner G., 1989, Modulation transfer functions in the auditory midbrain (MLD) of the guinea fowl (Numida meleagris), in: “Dynamics and Plasticity in Neuronal Systems ”, N. Eisner and W. Singer, eds, Thieme Verlag, Stuttgart.Google Scholar
  2. Bastian, J., 1981a, Electrolocation I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli, J. Comp. Physiol. A, 144:465.CrossRefGoogle Scholar
  3. Bastian, J., 1981b, Electrolocation II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons, J. Comp. Physiol. A, 144:481.CrossRefGoogle Scholar
  4. Bastian, J., 1986a, Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe, J. Neurosci., 6:553.PubMedGoogle Scholar
  5. Bastian, J., 1986b, Gain control in the electrosensory system: A role for the descending projections to the electrosensory lateral line lobe, J. Comp. Physiol. A, 158:505.PubMedCrossRefGoogle Scholar
  6. Bastian, J., and Yuthas, J., 1984, The jamming avoidance response of Eigenmannia: Properties of a diencephalic link between sensory processing and motor output, J. Comp. Physiol. A, 154: 895.CrossRefGoogle Scholar
  7. Bialek, W., Rieke, F., De Ruyter van Steveninck, R.R., and Warland, D., 1991, Reading a neural code, Science, 252:1854PubMedCrossRefGoogle Scholar
  8. Brenowitz, E.A., and Rose, G. J., 1994, Behavioural plasticity mediates aggression in choruses of the Pacific treefrog, Anim. Behav., 47:633.CrossRefGoogle Scholar
  9. Brenowitz, E.A., Rose, G.J., and Capranica, R.R., 1985, Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs, J. Comp. Physiol. A, 157:763.PubMedCrossRefGoogle Scholar
  10. Bullock, T.H., 1982, Electroreception, Ann. Rev. Neurosci., 5:121.PubMedCrossRefGoogle Scholar
  11. Bullock, T.H., Hamstra, R.H., and Scheich, H., 1972, The jamming avoidance response of high-frequency electric fish, J. Comp. Physiol. A, 77:1.CrossRefGoogle Scholar
  12. Emlen, S.T., 1972, An experimental analysis of the parameters of bird song eliciting species recognition, Behavior, 41:130.CrossRefGoogle Scholar
  13. Gerhardt, H.C., 1978, Temperature coupling in the vocal communication system of the gray treefrog, Hyla versicolor, Science, 199:992.Google Scholar
  14. Gerhardt, H.C., 1982, Sound pattern recognition in some North American treefrogs (Anura:Hylidae): Implications for mate choice, Am. Zool., 22:585.Google Scholar
  15. Gerhardt, H.C., 1988, Acoustic properties used in call recognition by frogs and toads. in: “The Evolution of the Anuran Auditory System ”, Fritzsch, B., Ryan M., Wilczynski, W., Hetherington, T., Walkowiak, W., eds, John Wiley and Sons, New York, NY.Google Scholar
  16. Gerhardt, H.C., and Dougherty, J.A., 1988, Acoustic communication in the gray treefrog, Hyla versicolor: Evolutionary and neurobiological implications, J. Comp. Physiol. A, 162:261.CrossRefGoogle Scholar
  17. Gooler, M, and Feng, A.S., 1992, Temporal coding in the frog auditory midbrain: Influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli, J. Neurophysioi., 67:1.Google Scholar
  18. Gray, E.G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron-microscopic study, J. Anat,. 93:420.Google Scholar
  19. Hall, J.C., and Feng, A.S.,1991, Temporal processing in the dorsal medullary nucleus of the northern leopard frog (Rana pipiens pipiens), J. Neurophysioi., 66:955.Google Scholar
  20. Heiligenberg, W., 1977, Principles of electrolocation and jamming avoidance in electric fish. A neuroethological approach. in: “Studies of Brain Function, Vol. 1, ” Braitenberg, V., ed, Springer, Berlin.Google Scholar
  21. Heiligenberg, W., 1989, Central processing of electrosensory information in gymnotiform fish, J. Exp. Biol, 146:255.PubMedGoogle Scholar
  22. Heiligenberg, W., 1991, The neural basis of behavior: A neuroethological view, Ann. Rev. Neurosci., 14:247.PubMedCrossRefGoogle Scholar
  23. Heiligenberg, W., 1991, “Neural Nets in Electric Fish ”, MIT press, Cambridge, MA.Google Scholar
  24. Heiligenberg, W., Baker, C., and Matsubara, J., 1978, The jamming avoidance response in Eigenmannia revisited: The structure of a neuronal democracy, J. Comp. Physiol. A, 127: 267.CrossRefGoogle Scholar
  25. Kay, R.H., 1982, Hearing modulations in sound, Physiol. Rev., 62:894.PubMedGoogle Scholar
  26. Keller, C., 1988, Stimulus discrimination in the diencephalon of Eigenmannia: The emergence and sharpening of a sensory filter, J. Comp. Physiol. A, 162:747.PubMedCrossRefGoogle Scholar
  27. Koch, C., and Zador, A., 1993, The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization, J. Neurosci., 13:413.PubMedGoogle Scholar
  28. Koch, C., Zador, A., and Brown, T.H., 1992, Dendritic spines: Convergence of theory and experiment, Science, 256:973.PubMedCrossRefGoogle Scholar
  29. Langner, G., 1992, Periodicity coding in the auditory system, Hearing Res., 60: 115.CrossRefGoogle Scholar
  30. Langner, G., and Schreiner, C.E., 1988, Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms, J. Neurophysiol., 60:1799.PubMedGoogle Scholar
  31. Matsubara, J., and Heiligenberg, W., 1978, How well do electric fish electrolocate under jamming?J. Comp. Physiol. A, 149:339.CrossRefGoogle Scholar
  32. Muller, W., and Connor, J.A., 1991, Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses, Nature, 354:73.PubMedCrossRefGoogle Scholar
  33. Partridge, B.L., Heiligenberg, W., and Matsubara, J., 1981, The neural basis for a sensory filter in the jamming avoidance response: No grandmother cells in sight., J. Comp. Physiol. A, 145:153.CrossRefGoogle Scholar
  34. Rees, A., and Palmer, A.R.,1989, Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broad-band noise, J. Acoust. Soc. Am., 85:1978.PubMedCrossRefGoogle Scholar
  35. Rose, G.J., 1986, A temporal processing mechanism for all species? Brain Behav. Evol., 28: 134.PubMedCrossRefGoogle Scholar
  36. Rose, G.J., and Capranica, R.R., 1983, Temporal processing in the central auditory system of the leopard frog (Rana pipiens), Science, 219:1087.PubMedCrossRefGoogle Scholar
  37. Rose, G.J., and Capranica, R.R., 1984, Processing amplitude-modulated sounds by the auditory midbrain of two species of toads: Matched temporal filters,J. Comp. Physiol. A, 154: 211.CrossRefGoogle Scholar
  38. Rose, G.J., and Capranica, R.R., 1985, Sensitivity to amplitude modulated sounds in the anuran auditory system, J. Neurophysiol., 53:446.PubMedGoogle Scholar
  39. Rose, G.J., and Heiligenberg, W., 1986, Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: Reading the sense of rotation in an amplitude-phase plane, J. Comp. Physiol. A, 158:613.PubMedCrossRefGoogle Scholar
  40. Rose, G.J., and Call, S.J., 1992, Evidence for the role of dendritic spines in the temporal filtering properties of neurons: The decoding question and beyond, Proc. Natl. Acad. Sci. USA, 89:9662.PubMedCrossRefGoogle Scholar
  41. Rose, G.J., and Call, S.J., 1993, Temporal filtering properties of midbrain neurons in an electric fish: Implications for the function of dendritic spines, J. Neurosci., 13: 1178.PubMedGoogle Scholar
  42. Rose, G.J., Brenowitz, E.A., and Capranica, R.R., 1985, Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs, J. Comp. Physiol. A, 157:763.PubMedCrossRefGoogle Scholar
  43. Rose, G.J., Zelick, R., and Rand, A.S., 1988, Auditory processing of temporal information in a neotropical frog is independent of signal intensity, Ethology, 77:330.CrossRefGoogle Scholar
  44. Rose, G.J., Kawasaki, M., and Heiligenberg, W., 1988, “Recognition units” at the top of a neuronal hierarchy? J. Comp. Physiol. A, 162:759.PubMedCrossRefGoogle Scholar
  45. Ryan, M.J., 1985), “The Tungara Frog ”, University of Chicago Press, Chicago, IL.Google Scholar
  46. Schildberger, K., 1984, Temporal selectivity of identified auditory neurons in the cricket brain, J. Comp. Physiol. A, 155:171.CrossRefGoogle Scholar
  47. Schreiner, C.E., and Urbas, J.V., 1986, Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF), Hearing Res., 21:227.CrossRefGoogle Scholar
  48. Schreiner, C.E., and Urbas, J.V., 1988, Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields, Hearing Res., 32:49.CrossRefGoogle Scholar
  49. Walkowiak, W., 1984, Neuronal correlates of the recognition of pulsed sound signals in the grass frog, J. Comp. Physiol. A, 155:57.CrossRefGoogle Scholar
  50. Wells, K.D., 1977, The social behavior of anuran amphibians, Animal Behav., 25:666.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gary J. Rose
    • 1
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations