New Directions in Calorimetry

  • William J. Willis


The idea of measurement of energy by absorbtion in matter and conversion to another more convenient form is an old one in physics, famous for its role in establishing the conservation of energy and the laws of thermodynamics. Conversion of energy to heat and its measurement by an increase in termperature is considered one of the most fundamental and reliable of measurements. When the large quantity of energy generated in radioactive decay seemed difficult to accept, calorimetric measurements of the energy provided particularly convincing evidence that the energy deduced by other means were truly correct1. After the measurement of decay electrons had uncovered the missing energy problem in beta decay, calorimetric measurements demonstrated that this must correspond to a failure of the conservation of energy2. The alternative possibility was the emission of energy in a form which could not be absorbed even in massive blocks of material. The confidence placed in this kind of measurement was important in the acceptance of the difficult concept of the neutrino.


Energy Resolution Interaction Length Neutral Pion Electromagnetic Calorimeter High Energy Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.Curie and A.Laborde, Comptes Rendu Acad. Sci. 136:673(1903).Google Scholar
  2. 2.
    C.S.Wu, “History of Beta Decay” North Holland Publishing Co., Amsterdam, (1960).Google Scholar
  3. R Kelley, J. Low Temp. Phys.:93(1993)Google Scholar
  4. B. Cabrera et al., Phys. Rev. Lett. 55:25(1985).ADSCrossRefGoogle Scholar
  5. 4.
    K.Pretzl et al.(eds.), “Low-Temperature Detectors for Neutrinos and Dark Matter” Springer Verlag, Berlin (1987).Google Scholar
  6. 5.
    C.W. Fabjan, NATO Advanced Studies Institute on Techniques and Concepts in High-Energy Physics, (1984).Google Scholar
  7. 6.
    J. Ranft, Particle Accelerators 3:129(1972)Google Scholar
  8. A. Baroncelli, Nucl. Instr. and Methods,118:445(1974)ADSCrossRefGoogle Scholar
  9. T. A. Gabriel, Nucl. Instr. and Methods, 134:271(1976) quoted in Reference 5.ADSCrossRefGoogle Scholar
  10. 7.
    J.B.Birks”The Theory and Practice of Scintillation Counters” Pergamon, New York (1964).Google Scholar
  11. 8.
    E.B.Hughes et al., IEEE Trans. Nucl. Sci.NS-19:126(1972).ADSCrossRefGoogle Scholar
  12. 9.
    T. Akesson et al., CERN 84–10(1984).Google Scholar
  13. 10.
    C.W.Fabjan et al., Phys. Lett. 60B:105(1975).ADSGoogle Scholar
  14. 11.
    J. Ranft, Particle Accelerators 3:129(1972), T. Gabriel,Google Scholar
  15. 12.
    C.W.Fabjan et al., Nucl. Instrum. Methods 141:61(1977).ADSCrossRefGoogle Scholar
  16. 13.
    R.Wigmans, Nucl. Instr. and Meth. A259:389 (1987), A265:273ADSGoogle Scholar
  17. R.Wigmans(1988),Ann. Rev. Nucl. Part. Sci.41:133(1991).Google Scholar
  18. A. Lankford, thesis, Yale University (1978).Google Scholar
  19. 15.
    B.Rossi, “High Energy Particles” Prentice-Hall, New York (1952), Chapter 5.Google Scholar
  20. R.LFord and W.P.Nelson, Stanford preprint SLAC-210 EGS, Version IV.Google Scholar
  21. Particle Data Tables, Phys. Rev. D50:1173(1994).Google Scholar
  22. 18.
    B. Andrieu et al., Nucl. Instr. and Meth. A336:499(1993).ADSGoogle Scholar
  23. 19.
    T. Akesson et al., CERN 84–10(1989).Google Scholar
  24. 20.
    A.Caldwell et al., Nucl. Instr. and Meth. A330:389(1993).ADSGoogle Scholar
  25. 21.
    W.Willis and V. Radeka, Nucl. Instr. and Meth. 120:221(1974).ADSCrossRefGoogle Scholar
  26. 22.
    W. Selove, CERN NP 72–25(1972)Google Scholar
  27. F. Turkot et al. U. Penn. Report “Performance of a Sampling Calorimeter” (1973)Google Scholar
  28. T. Gabriel et al., Nucl. Instr. and Meth. 129:409(1975).ADSCrossRefGoogle Scholar
  29. NA48, “CP Violation in Neutral K Decay” CERN LHCC, on 3w.Google Scholar
  30. 24.
    Ren-yuan Zhu and H. Yamamoto, California Institute of Technology Report CALT-68-1822(1992) and S. Mrenna, CALT-68-1856.Google Scholar
  31. ATLAS Technical Proposal, CERN LHCC, on 3w.Google Scholar
  32. 27.
    D.Acosta et al., Nucl. Instr. and Meth. A302:481(1991) and A308:128(1992).ADSGoogle Scholar
  33. 28.
    R Garwin, Rev. Sci. Instr. 31:1010(1960)ADSCrossRefGoogle Scholar
  34. W.BAtwood et al., SLAC-TN-76-7(1976)Google Scholar
  35. W. Hofmann et al., Nucl. Instr. and Meth. 195:475(1982).ADSCrossRefGoogle Scholar
  36. CMS Technical Proposal, CERN LHCC, on 3w.Google Scholar
  37. 30.
    B.Aubert et al., Nucl. Instr. and Meth. A324:93(1992).Google Scholar
  38. Reference 25, and O. Benary et al.,(1995), to be published in Nucl. Instr. and Methods.Google Scholar
  39. M. Leltchouk, private communication and M. Seman, ATLAS Technical note in preparation.Google Scholar
  40. 33.
    V.Radeka, Annu. Rev. Nucl. Part. Sci. 38:217(1988).ADSCrossRefGoogle Scholar
  41. M. Danilov et al., CMS Technical Note, and Reference 29.Google Scholar
  42. M. Ferguson et al., ATLAS Technical Note CAL-NO-42(1994); A. Savine et al., Proc.Brookhaven Conference on Calorimetry, Sept. 1994, to be published.Google Scholar
  43. K. Shmakov, GEM Technical Note TN-93-295 and Reference 25.Google Scholar
  44. 37.
    D.Bird et al., Phys. Rev. Lett. 21:71(1993), Ap. 1424:491(1994), and Detection of a cosmic ray with measured energy well beyond the expected spectral cut off due to the cosmic microwave radiation, Server Number astro-ph/9410067, Oct. 1994.Google Scholar
  45. 38.
    P. Sokolsky, “Introduction to Ultra High Energy Cosmic Ray Physics” Addison Wesley,Redwood City, California (1989).Google Scholar
  46. 39.
    M. Spiro and L. Sulak, “Megaprojects in the Field of Particle Astrophysics” in “Particle Physics” OECD, Paris, (1995).Google Scholar
  47. 40.
    R. Baltrusaitis et al., Nucl. Instr. and Meth. A240:410(1985).ADSGoogle Scholar
  48. J.W. Cronin, “International Workshop on Techniques to Study Cosmic Rays with Energies Above 1019eV”Nucl. Physics B Proc. Series:28(1992).Google Scholar
  49. P.K.F. Grieder, “DUMAND: facts, figures and initial operations” Nucl. Physics B Proc. Series:38(1995).Google Scholar
  50. G. Giacomelli et al., “MACRO” Baksan International School on Particle Physics and Cosmology, Baksan 1993, Bologna Preprint DFUB 93–14.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • William J. Willis
    • 1
  1. 1.Nevis LaboratoriesColumbia UniversityIrvington on HudsonUSA

Personalised recommendations